
Efficient Multiplicative updates for Support Vector Machines

Vamsi K. Potluru∗ Sergey M. Plis∗ Morten Mørup† Vincent D. Calhoun∗

Terran Lane∗

January 26, 2009

Abstract

The dual formulation of the support vector machine (SVM)

objective function is an instance of a nonnegative quadratic

programming problem. We reformulate the SVM objective

function as a matrix factorization problem which establishes

a connection with the regularized nonnegative matrix fac-

torization (NMF) problem. This allows us to derive a novel

multiplicative algorithm for solving hard and soft margin

SVM. The algorithm follows as a natural extension of the

updates for NMF and semi-NMF. No additional parameter

setting, such as choosing learning rate, is required. Exploit-

ing the connection between SVM and NMF formulation, we

show how NMF algorithms can be applied to the SVM prob-

lem. Multiplicative updates that we derive for SVM problem

also represent novel updates for semi-NMF. Further this uni-

fied view yields algorithmic insights in both directions: we

demonstrate that the Kernel Adatron algorithm for solv-

ing SVMs can be adapted to NMF problems. Experiments

demonstrate rapid convergence to good classifiers. We ana-

lyze the rates of asymptotic convergence of the updates and

establish tight bounds. We test them on several datasets us-

ing various kernels and report equivalent classification per-

formance to that of a standard SVM.

1 Introduction

Support vector machines (SVM) are now routinely used
for many classification problems in machine learning [15]
due to their ease of use and ability to generalize. In
the basic case, the input data, corresponding to two
groups, is mapped into a higher dimensional space,
where a maximum-margin hyperplane is computed to
separate them. The “kernel trick” is used to ensure
that the mapping into higher dimensional space is never
explicitly calculated. This can be formulated as a non-
negative quadratic programming (NQP) problem and
there are efficient algorithms to solve it [13].

An SVM can be trained using variants of the gradi-
ent descent method applied to the NQP. Although these
methods can be quite efficient [5], their drawback is

∗University of New Mexico
†Technical University of Denmark

that they require a manually-tuned and problem specific
learning rate. Subset selection methods are an alterna-
tive approach to solving the SVM NQP problem [13].
At a high level, they work by splitting the arguments of
the quadratic function at each iteration into two sets: a
fixed set, where the arguments are held constant, and a
working set of the variables being optimized in the cur-
rent iteration. These methods, though efficient in space
and time, still require a heuristic to exchange arguments
between the working and the fixed sets.

An alternative algorithm for solving the general
NQP problem has been applied to SVMs in [17]. The
algorithm, called M3, uses multiplicative updates to
iteratively converge to the solution. It does not require
any heuristics, such as setting the learning rate or
choosing how to split the argument set. Multiplicative
updates in the M3 algorithm are formulated for the
general NQP problem and then applied to SVM as a
special case. It was also demonstrated in [16] that M3

can solve soft-margin SVMs and the sum constraint can
be accounted for. However, accounting for the sum
constraint requires choosing a parameter, which violates
the original intention of creating a parameter free SVM
algorithm.

In this paper, we reformulate the dual SVM problem
as a matrix factorization problem and demonstrate
a connection to the non-negative matrix factorization
(NMF) algorithm [8]. NMF employs multiplicative
updates and is very successful in practice due to its
independence from the learning rate parameter, low
computational complexity, and ease of implementation.

The new formulation allows us to devise multiplica-
tive updates for solving SVM, resulting in a novel mul-
tiplicative algorithm. The new updates inherit all of
the good properties of the NMF algorithm, such as in-
dependence from hyper-parameters, low computational
complexity, and ease of implementation. Furthermore,
in the case when a positive kernel is used, the new algo-
rithm converges faster than the previous multiplicative
solution of the SVM problem from [17] both asymptoti-
cally (a proof is provided) and in practice (as we demon-
strate empirically). Derived for the SVM problem, the

new multiplicative updates are equally applicable to the
semiNMF problem [2]. As novel updates for semi-NMF
they provide an algorithm with a simpler convergence
proof than in [2].

Although our updates are derived for the case when
the separating hyperplane passes through the origin,
we demonstrate how to include the bias in the form
of the sum constraint. In contrast to the M3 algorithm,
the bias is optimized via parameter free multiplicative
updates. This makes the novel algorithm the first
parameter free multiplicative algorithm for solving the
general hard margin SVM problem. Finally we show
how to solve the soft margin SVM problem using the
new algorithm.

Establishing the connection between the dual SVM
and the primal NMF problems opens up possibilities
for application of algorithms developed for one of the
problems to the other. As an example, we demonstrate
how projected gradient algorithms developed for NMF
can be applied to SVM. Further we show a possibility
of adopting SVM algorithms to NMF problems by
demonstrating how the Kernel Adatron algorithm [5]
is applied to NMF.

To support theoretical findings about the improved
asymptotic bounds of our novel multiplicative SVM
algorithm, we demonstrate its convergence empirically
on standard datasets.

2 NMF

We present a brief introduction to NMF mechanics with
the notation that is standard in NMF literature. NMF
is a tool to split a given non-negative data matrix
into a product of two non-negative matrix factors [8].
The constraint of non-negativity (all elements are ≥
0) usually results in a parts-based representation and
is different from other factorization techniques which
result in more holistic representations (e.g. PCA and
VQ).

Given a non-negative m × n matrix X, we want to
represent it with a product of two non-negative matrices
W ,H of sizes m × r and r × n respectively:

(2.1) X ≈ WH.

Lee and Seung [8] describe two simple multiplica-
tive updates for W and H which work well in practice.
These correspond to two different cost functions repre-
senting the quality of approximation. Here, we use the
Frobenius norm for the cost function. The cost function

and the corresponding multiplicative updates are:

E =
1

2
‖X − WH‖2

F(2.2)

W = W ⊙
XHT

WHHT
,(2.3)

H = H ⊙
W T X

W T WH
,(2.4)

where ‖.‖F denotes the Frobenius norm and the oper-
ator ⊙ represents element-wise multiplication. Division
is also element-wise. It should be noted that the cost
function to be minimized is convex in either W or H

but not in both [8]. In [8] it is proved that when the
algorithm iterates using the updates (2.3) and (2.4), W

and H monotonically decrease the cost function.
The slightly mysterious form for the above updates

can be understood as described in [8]. A simple additive
update for H is given by:

(2.5) H = H + η ⊙ (W T X − W T WH)

If the learning rate given by the matrix elements of
η be all set to some small positive number then this is
the conventional gradient descent. However, setting the
learning rate matrix as follows:

(2.6) η =
H

W T WH

gives us the NMF updates. We note the multiplicative
factors for the updates correspond to the negative
component of the derivative divided element-wise by the
positive component of the derivative respectively.

3 semi-NMF

NMF problem was extended by Ding et al. [2] to semi-
NMF, where data and one of the factors were allowed
to have elements of either sign. Ding et al. [2] derive
and prove the convergence of multiplicative updates for
this case:

E =
1

2
‖X − WH‖2

F(3.7)

W = XHT (HHT)−1(3.8)

H = H ⊙

√

[W T X]+ + [W T W]−H

[W T W]+H + [W T X]−
(3.9)

4 SVM as matrix factorization

Let the set of labeled examples be {(xi, yi)}
N
i=1, with

binary class labels yi = ±1 corresponding to two classes,
denoted by A and B respectively. Let the mapping
Φ(xi) be the representation of the input datapoint xi in
space Φ, where we denote the space by the name of the

mapping function performing the transformation. We
now consider the problem of computing the maximum
margin hyperplane for SVM in the case where the
classes are linearly separable and the hyperplane passes
through origin (We will relax this constraint presently.).

The dual quadratic optimization problem for
SVM [15] is given by minimizing the following loss func-
tion:

S(α) =
1

2

n
∑

i,j=1

αiαjyiyjk(xi,xj) −
n

∑

i=1

αi(4.10)

subject to αi ≥ 0, i ∈ {1..n},

where k(xi,xj) is a kernel that computes the inner
product Φ(xi)

T Φ(xj) in the space Φ by performing all
operations only in the original data space on xi and xj ,
thus defining a Hilbert space Φ.

The first sum can be split into three terms: two
terms contain kernels of elements that belong to the
same respective class (one term per class), and the
third contains only the kernel between elements of the
two classes. This rearrangement of terms allows us
to drop class labels yi, yj from the objective function.
Denoting k(xi,xj) with kij and defining ρij = αiαjkij

for conciseness, we have:

min
α

1

2

∑

ij∈A

ρij − 2
∑

i∈B
j∈A

ρij +
∑

ij∈B

ρij

−

n
∑

i=1

αi

(4.11)

subject to αi ≥ 0, i ∈ {1..n}.

Noticing the square and the fact that kij =
Φ(xi)

T Φ(xj) we rewrite the problem as:

min
α

1

2
‖Φ(XA)αA − Φ(XB)αB‖2

2 −
∑

i∈{A,B}

αi(4.12)

subject to αi ≥ 0,

where the matrices XA,XB contain the datapoints
corresponding to groups A and B respectively with
the stacking being column-wise. The map Φ applied
to a matrix corresponds to mapping each individual
column vector of the matrix using Φ and stacking them
to generate the new matrix. The vectors αA and
αB contain coefficients of the support vectors of the
two groups A and B respectively. We will use the
vector α to denote the concatenation of vectors αA,αB .
Expression (4.12) is a form of matrix factorization
problem and resembles NMF with an additional term in
the objective [8]. The above formulation enables other
metrics D(Φ(XA)αA||Φ(XB)αB) than least squares for

SVM such as more general Bregman divergence [1].
However, to be computationally efficient the metric used
has to admit the use of the kernel trick.

5 Sign-insensitive Kernel SVMs

In this section, we derive two new updates for solving
SVM’s with sign-insensitive kernels based on NMF. A
sign-insensitive kernel is one whose output can be either
positive, negative or zero. One of them follows immedi-
ately by appealing to the semi-NMF formulation. The
other is derived using the idea from NMF updates of
Lee and Seung [8].

5.1 semi-NMF SVM We differentiate the objec-
tive (4.12) with respect to αA:

∂S

∂αA
= Φ(XA)T Φ(XA)αA −

−(Φ(XA)T Φ(XB)αB + 1)(5.13)

= K(XA,XA)αA

−(K(XA,XB)αB + 1)

We slightly abuse notation to define kernel for
matrices as follows: K(C,D) is given by the matrix
whose (i, j)th element is given by the inner product of
ith and jth datapoints of matrices C,D respectively in
the feature space Φ for all values of (i, j) in range. We
note that the derivative has a positive and a negative
component. We use the following notation to represent
kernel matrices:

K(XA,XB) = KAB

K(XA,XA) = KA

and their decomposition into K+ and K−:

K+
ij =

{

Kij Kij > 0,

0 otherwise,
K−

ij =

{

|Kij | Kij < 0,

0 otherwise.

Similarly, we take the derivative with respect to
αB . Recalling the updates for semi-NMF from Sec-
tion 3, we write down the multiplicative updates for
problem (4.12):

αA = αA ⊙

√

K+
ABαB + K−

A αA + 1

K+
AαA + K−

ABαB

αB = αB ⊙

√

K+
BAαA + K−

BαB + 1

K+
BαB + K−

BAαA

(5.14)

where 1 is an appropriately sized vector of ones and ⊙
denotes the Hadamard product as before. The proof of

the updates directly follows from the proof of semiNMF
updates [2, 10].

5.2 MUSIK If instead of using semi-NMF formula-
tion, we use NMF to derive the updates, i.e. updating
by the ratio of the negative to the positive part of the
gradient, we get the following:

αA = αA ⊙
K+

ABαB + K−
A αA + 1

KAαA + K−
ABαB

αB = αB ⊙
K+

BAαA + K−
BαB + 1

K+
BαB + K−

BAαA

(5.15)

In these updates, we note that the split is not done
as in the previous section. Instead the kernel matrix is
split as follows:

K+
ij =

Kij Kij > 0,

Kij + Dii i = j,

0 otherwise,

K−
ij =

|Kij | Kij < 0,

|Kij | + Dii i = j,

0 otherwise.

In other words the new split when defined in terms
of the old split looks like:

K+
new = K+ + D

K−
new = K− + D

K = K+
new − K−

new

= K+ − K−

where matrix D is a non-negative diagonal matrix.
We note that in practice, we explicitly work with the
matrices in the old split even though we are using the
new split. This is compensated for in the new updates.
The construction of matrix D is as follows:

[DA]ii = max(0,
∑

j 6=i

[

K−
A

]

ij
−

[

K
−

AB
αB

αA

]

i
).(5.16)

[DB]ii = max(0,
∑

j 6=i

[

K−
B

]

ij
−

[

K
−

BA
αA

αB

]

i
).(5.17)

This ensures that K−
new becomes positive semi-definite.

At each new iteration of the updates, we choose D

adaptively using eq 5.16 and the new updates are given
by:

αA = αA ⊙
K+

ABαB + K−
A αA + 1 + DAαA

KAαA + K−
ABαB + DAαA

αB = αB ⊙
K+

BAαA + K−
BαB + 1 + DBαB

K+
BαB + K−

BAαA + DBαB

(5.18)

This condition is required for convergence proper-
ties of the updates. We defer the proof to the appendix.
We note that in the case of non-negative kernels i.e.
kernels which output a nonnegative value for all valid
inputs, the split can be done trivially by having K− set
to zero and K+ set to the original kernel matrix.

We call this new algorithm Multiplicative Up-

dates for sign-insensitive Kernel SVM (MUSIK).
We note that besides solving SVM problem, this for-
mulation presents multiplicative updates for semi-NMF
alternative to Ding et al. [2]. Further, it positions us
to extend to the general, soft-margin, biased SVM (Sec-
tions 8 and 9).

6 Non-negative Quadratic Programming

It is well known that the dual formulation (4.11) can be
represented as a quadratic programming problem with
a non-negativity constraint on alphas [15]:

(6.19) F (α) =
1

2
αT Aα − 1T α,

where A is the Gram matrix of data points whose
values are scaled by corresponding label products (Aij =
yiyjK(xi,xj)) and 1 denotes an appropriately sized
vector of ones. A more general form of quadratic
programming can be written as:

(6.20) F (α) =
1

2
αT Aα + bT α.

This problem is called Non-negative Quadratic Pro-
gramming (NQP) when the non-negativity constraint
is enforced on α. SVM is a special case of NQP.

Parameter free multiplicative updates for NQP have
been previously introduced in [17]. For the special case
of SVM the updates from [17] have the following form:

(6.21) α = α ⊙
1 +

√

1 + 4(A+α) ⊙ (A−α)

2(A+α)
,

where A+ and A− are defined as:

A+
ij =

{

Aij Aij > 0,

0 otherwise,
(6.22)

A−
ij =

{

|Aij | Aij < 0,

0 otherwise.
(6.23)

Reformulated SVMs for which we have derived
multiplicative updates in Section 5, can be represented
as NQP with a special form of A and α:

α̃ =
[

αA αB

]T
(6.24)

Ã =

[

K(XA,XA) −K(XA,XB)
−K(XB ,XA) K(XB ,XB)

]

(6.25)

The block structure of Ã allows for a clear and easy
split of this matrix into Ã+ and Ã− after which it is
clear that the multiplicative update of NQP (6.21) is
different from the updates in (5.15).

In order to highlight that difference we have gener-
ated a random matrix A of form (6.25) for dimension
2 and solved the problem using the method introduced
in Section 5 and the update (6.21), introduced in [17].
Convergence paths for both algorithms are shown in
Figure 1. The figure shows a paraboloid of the two
dimensional objective function generated by a random
construction of the Gram matrix satisfying the struc-
ture in (6.25). MUSIK and M3 algorithms [17] were
applied to this problem starting at α = [1, 1]T . As ex-
pected, both algorithms arrive at the unique solution of
the convex problem, however they follow different paths
and MUSIK takes fewer steps.

Figure 1: The figure shows a paraboloid of the two
dimensional objective function generated by a random
construction of the Gram matrix satisfying the structure
in (6.25). MUSIK and M3 algorithms [17] were applied
to this problem starting at α = [1, 1]T . As expected,
both algorithms arrive at the unique solution of the
convex problem, however they follow different routes
and the non-negative kernel SVM takes fewer steps.

Figure 1 demonstrates the differences between the
methods on a single problem case. In order to have
an aggregate measure of the difference we have imple-
mented the following simulation. We have randomly
constructed 100 positive definite matrices Ã with the
structure required by our algorithm (6.25) (recall that

the structure comes from the requirement of the ker-
nel to be non-negative) for each dimension from the
following list: (16, 32, 64, 128, 256, 512, 1024, 2048).
Equal number of data points of each class was assumed.
For each of these matrices we have solved the QP prob-
lem (6.19) using quadprog function of Matlab. All 800
problems were constructed to be well conditioned and
solvable by this function. Knowing the exact solution
to a given problem we ran both MUSIK and M3 until
they were within the given percent of the solution (con-
vergence tolerances of 1%, 0.1% and 0.01% were used).
Although the absolute value of this percent depends on
the distance of the optimum from the base hyperplane it
is not an issue in our case due to the shift b being equal
to 1 for all the problems. For each problem we have
computed the ratio of the number of iterations it took
the M3 algorithm to reach within the given percent of
the solution to the number of iterations it took MUSIK
to finish. Results of this simulation are displayed in
Figure 2.

Figure 2: The figure shows the average ratio of the
number of iterations for M3 to the number of iterations
for MUSIK taken to achieve given tolerance on the
same problem (up is good). Computation is done at
error bar points, the lines connecting them are for the
visual guide only. The larger the problem size the
smaller the number of iterations the algorithm needs
compared to M3, which can be up to 4 times less.
Since the running time per iteration is comparable
for both algorithms 4 times improvement in iterations
means 4 times faster. Even for 0.01% distance from the
solution our algorithm is more than two times faster on
reasonable sized problems.

7 Decomposition

As we show in the previous section MUSIK updates
converge faster than M3. In part this is due to the
better asymptotic bound on the convergence rate which
we discuss in Section 11. However, the next feature that
improves the convergence rate is splitting α into parts.
Separately updating two groups of alphas is similar to
decomposition techniques [12], only the way we set the
problem does not require any additional heuristics.

In order to demonstrate that decomposition affects
the performance in our multiplicative updates, we com-
pare it with MUSIK algorithm in which elements of α

are updated simultaneously:

[

αA

αB

]

=

[

αA

αB

]

⊙

[

K−
A K+

AB

K+
BA K−

B

] [

αA

αB

]

+ 1

[

K+
A K−

AB

K−
BA K+

B

] [

αA

αB

](7.26)

We call this modification of the algorithm integrative
MUSIK (iMUSIK).

Figure 3 shows objective function, training error
and testing error as a function of iteration number for
MUSIK, iMUSIK and M3 algorithms. Asymptotically
the fastest convergence is exhibited by the MUSIK algo-
rithm and the iMUSIK algorithm fall between MUSIK
and M3. The difference between iMUSIK and MUSIK is
only due to the decomposition. Decomposition improves
the convergence rate as improved updated parameters
are used when updating the remaining parameters.

If we start making the size of the subsets updated
at once smaller, we arrive at chunking algorithms of
which SMO [13] represents the extreme case. In the
extreme case we can update only a single element of α

per iteration. In this case we end up with multiplicative
variant of the Kernel Adatron (KA) algorithm [5].

KA is a simple gradient ascent procedure for learn-
ing support vectors with adaptive learning rate. It has
a learning rate parameter which needs to be set. The
updates for kernel adatron are as follow:

(7.27) αi = αi + ηi(1 − yi(
∑

j

K(xi, xj)yjαj))

where ηi is the learning rate parameter. In the case of
support vector machines it is set as ηi = 1

K(xi,xi)
. If we

instead set the learning rate to be

(7.28) ηi =
αi

Ciα

we obtain a multiplicative algorithm for KA through
MUSIK updates. Note that the matrix C corresponds
to the matrix in the denominator of the updates in
equation (7.26) and we subscript it to denote the

corresponding row vector. We get the multiplicative
updates of MUSIK done sequentially. Kernel adatron
(KA) belongs to the class of subset methods and can be
shown equivalent to the popular SMO algorithm [6].

When heuristics are used to choose which αi to up-
date KA demonstrates very fast convergence. Thus it
is expected that multiplicative KA with heuristics is
considerably faster than MUSIK. However, the attrac-
tive feature of M3 and MUSIK is the absence of hyper-
parameters, a feature that is removed by the need to
use heuristics in multiplicative KA algorithm.

Also, the KA algorithm can be adapted to solve
the NMF problem. This was indeed done by applying
sequential updates to solve nonnegative least squares
problem (NNLS) [4]. This was subsequently adapted
for solving NMF by Zdunek and Cichoki [18].

8 Soft Margin SVM

We can extend the multiplicative updates to incorporate
upper bound constraints of the form αi ≤ l where l is a
constant as follows:

(8.29) αi = min {αi, l}

These are referred to as box constraints, since they
bound αi from both above and below.

The dual problem for soft margin SVM is given by:

min
α

1

2

n
∑

i,j=1

αiαjyiyjk(xi,xj) −

n
∑

i=1

αi(8.30)

subject to 0 ≤ αi ≤ l, i ∈ {1..n}.

The parameter l is a regularization term, which
provides a way to avoid overfitting. We note that
this objective differs from hard margin SVM (4.11)
only in box constraints. Soft margin SVM involves
box constraints and that can be handled by the above
formulation. At each update of α, we implement a step
given by (8.29) to ensure the box constraint is satisfied.

9 Bias

SVM with a bias term is given by the following formu-
lation:

S(α) =
1

2

n
∑

i,j=1

αiαjyiyjk(xi,xj) −
n

∑

i=1

αi(9.31)

subject to αi ≥ 0,
∑

i

yiαi = 0, i ∈ {1 . . . n}.

We can incorporate bias into MUSIK by considering
the following modifications as shown in Keerthi et al. [7].
We introduce a weight variable λ and rewrite the

1e0 1e1 1e2 1e3 1e4
iterations

-90

-80

-70

-60

-50

-40

-30

-20

-10

0
v
a
lu

e

Objective

M
3

MUSIK
iMUSIK

1e0 1e1 1e2 1e3 1e4
iterations

0

1

2

3

4

5

6

e
rr

o
r(

%
)

Training Error

M
3

MUSIK
iMUSIK

1e0 1e1 1e2 1e3 1e4
iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

e
rr

o
r(

%
)

Testing Error

M
3

MUSIK
iMUSIK

Figure 3: Differences in convergence on the UCI breast cancer dataset for MUSIK, M3 and integrated MUSIK
(iMUSIK) algorithms.

equality constraint
∑

i yiαi = 0 as the following two
equality constraints :

∑

i∈A

αi = λ,
∑

i∈B

αj = λ

Let us introduce new variables βk = αk/λ for all k
and we obtain the following new objective :

S1(β, λ) =
λ2

2

n
∑

i,j=1

βiβjyiyjk(xi,xj) − 2λ(9.32)

s.t. βi ≥ 0,
∑

i∈A

βi = 1,
∑

i∈B

βi = 1.

First, we optimize λ keeping the vector β fixed
and then alternate by optimizing β keeping λ fixed.
Optimizing with respect to λ gives :

(9.33) λ =
2

∑

i

∑

j βiβjyiyjk(xi,xj)

We substitue this value of λ in the above formula-
tion to get the new objective :

S2(β) =
1

2

n
∑

i,j=1

βiβjyiyjk(xi,xj)(9.34)

s.t. βi ≥ 0,
∑

i∈A

βi = 1,
∑

i∈B

βi = 1.

We update the β vector corresponding to each group
alternatingly and derive the following updates similar

to Eggert and Körner [3]:

βA = βA ⊙
KABβB + 1βT

AKAβA

KAβA + 1βT
AKABβB

βB = βB ⊙
KBAβA + 1βT

BKBβB

KBβB + 1βT
BKBAβA

(9.35)

when there is normalization involved. The updates are
not guaranteed to be non-increasing but in practice
converge to global optimum – an observation similar
to [3]. The updates assume that the kernels are
nonnegative. A nonnegative kernel is one whose output
is always nonnegative irrespective of its input. Similar
to MUSIK algorithm, the updates can be extended to
general kernels.

10 Fixed points

We show that the updates have fixed points wherever
the objective function S(α) achieves its minimum value.
Let α∗ be the global minimum. Let us consider the
coefficients corresponding to group A. At such a point,
we either have that each αi

A is greater than zero and
derivative of objective with respect to αi

A vanishes or it
is zero and derivative is greater than or equal to zero.
The first condition applies to the positive elements of
α∗

A with the requirement that their corresponding terms
in the gradient be zero. The derivatives of these terms

are given by:

∂S

∂αi
A

∣

∣

∣

∣

α∗

A

= (K(XA,XA)α∗
A)i

−(K(XA,XB)α∗
B)i − 1

= −(K+
ABα∗

B)i − (K−
A α∗

A)i − 1

+(KAα∗
A)i + (K−

ABα∗
B)i

(10.36)

This condition applies to the support vectors. For
non-support vectors corresponding to them being zero
we have the second condition. Fixed points occur
when one of the following two conditions hold. Either
the element to be updated is greater than zero and
multiplicative factor is unity or the element is zero. We
can see that in the case of the element being non-zero the
multiplicative factor is indeed one. Similar analysis can
be done for coefficients corresponding to group B. Thus
the updates have fixed points wherever the objective
reaches its minimum value. We note that at the fixed
point M3 and MUSIK are the same.

11 Asymptotic convergence

The M3 algorithm [17] observed a rapid decay of non-
support vector coefficients and did an analysis of rates
of asymptotic convergence. They perturb one of the
non-support vector coefficients, say αi away from the
fixed point to some nonzero value δαi and fix all the
remaining values. Applying their multiplicative update
from (6.21) gives a bound on the asymptotic rate of
convergence.

Let di = K(xi,w)/
√

K(w,w) denote the per-
pendicular distance in the feature space from xi to
the maximum margin hyperplane and d = mini di =
1/

√

K(w,w) denote the one-sided margin to the

maximum-margin hyperplane. Also, li =
√

K(xi,xi)
denotes the distance of xi to the origin in the feature
space and l = maxi li denote the largest such distance.
The following bound on the asymptotic rate of conver-
gence γM3

i was established:

(11.37) γM3

i ≤ [1 +
1

2

(di − d)d

lil
]−1

We do a similar analysis for rate of asymptotic
convergence of the multiplicative updates of the MUSIK
algorithm in the case of nonnegative kernels. We
perturb one of the non-support vector coefficients fixing
all the other coefficients and apply the multiplicative
update. This enables us to calculate a bound on rate
of convergence. A bound on the asymptotic rate of
convergence in terms of geometric quantities is given

as follows:

(11.38) γMUSIK
i ≤ [1 +

(di − d)d

lil
]−1

The proof sketch can be found in appendix. It is for
non-negative kernels, but we note that they constitute
the majority of the popular and widely used kernels.
We note that our bound is tighter compared to the M3

algorithm as γMUSIK
i ≤ γM3

i .

12 Adapting NMF algorithms for SVM

Multiplicative updates are not the only way to solve
NMF-type problems. For example Lin [9] shows a fast
projected-gradient algorithm for solving NMF. Zdunek
and Cichoki [18] , Dhillon and Sra [1] etc give more al-
gorithms for solving NMF. Projected gradient algorithm
can be used for solving SVM with a slight modification
to the algorithm. The derivative has to be modified
and the rest of the algorithm of updating dual vectors
α corresponding to group A and group B alternatively
remains.

We will show how to adapt the Landweber method
for solving NMF [18] to solve the SVM problem.

Taking the gradient as given in equation 5.13, we
can update the dual variables as follows:

αA = αA − η ⊙ d(12.39)

η =
2

KA1
(12.40)

αA = max(0,αA),(12.41)

where d corresponds to derivative in 5.13 and max
is applied to two vectors element-wise. Similarly, we
update the dual variables corresponding to group B
given by the vector αB .

13 Power methods

Following the work in [14], we can increase the con-
vergence speed of the algorithms by raising the multi-
plicative factor in the updates by a power greater than
one. In the original work, it was applied to NMF as the
Adaptive Overrelaxed NMF(ANMF) algorithm. Given
a cost function C(α) over nonnegative α, we can define
its positive and negative component of the derivative

by pd = ∂C(α)+

∂αi
, nd = ∂C(α)−

∂αi
respectively. The multi-

plicative updates can now be written as follows:

αi = αi(
nd

pd
)γ(13.42)

where γ is a real number greater than one. This is
applied to MUSIK and we get faster convergence as
expected.

i support vectors ǫt(%) ǫg(%)

0 3.8 0.0

1 2.5 3.0

2 1.5 1.5

4 0.5 1.5

8 0.2 2.3

16 0.0 2.3

64 0.0 2.3

Figure 4: Rate of convergence of multiplicative updates
for breast cancer dataset using RBF kernel with σ = 3. i

is the iteration number, ǫt is the training error, ǫg is the
test error. The support vectors have been rearranged
for visualization into active and inactive.

14 Experiments

In order to demonstrate practical applicability of theo-
retical properties proved in previous section, we test the
above updates on two real world problems consisting of
breast cancer dataset and aspect-angle dependent sonar
signals from the UCI Repository [11]. They contain 683
and 208 labelled examples respectively. The breast can-
cer dataset was split into 80% and 20% for training and
test sets respectively. The sonar dataset was equally di-
vided into test and training sets. The support vectors
were all initialized to one. Different kernels involving
polynomial and radial basis functions were applied to
the dataset. Misclassification rates on the test datasets
after 750 iterations are shown in Table 1. They match
previously reported error rates on this dataset [17]. The
rate of convergence of support vectors is shown in Fig-
ure 4.

These results support our derivations and demon-
strate that the algorithm can be used for training SVM
with non-negative kernels. However, since the problem
is convex and there exists a unique solution all correct
algorithms will converge to the same solution and arrive
at similar classification error rates.

In the following we test the MUSIK algorithm on a
medium sized problem of USPS handwritten digits data
set. It contains 7291 training examples. We consider
the binary class problem with all the samples having
digit ’2’ as labels belong to one and all the rest to
another. This was compared with the state of the art
multiplicative updates for NQP from [17].

Kernel
Breast Sonar

M3 M KA M3 M KA

P
ol

y

4 2.26 2.26 2.26 9.62 9.62 9.62

6 3.76 3.76 3.76 10.58 10.58 10.58

G
au

ss
ia

n

3 2.26 2.26 2.26 11.53 11.53 11.53

1 0.75 0.75 0.75 7.69 7.69 7.69

Table 1: Misclassification rates (%) on the breast cancer
and sonar datasets after convergence of the M3, MUSIK
(M) and Kernel Adatron (KA) algorithms. Polynomial
kernels of degree 4 and 6 and Gaussian kernels of σ 1
and 3 were used.

For the experiments we have normalized the USPS
dataset to lie in the range [−1, 1] and smoothed it with a
2×2 Gaussian kernel. The non-negative kernel used for
the experiment was the Gaussian radial basis function
K(xi,xj) = e‖xi−xj‖

2/2σ2

, with σ = 6.0. The slack
penalty was set to 10.

Our algorithm is slightly faster per iteration due
to an extra square root and multiplication per training
pattern in the M3 algorithm. We ignore that slight
difference and plot the objective function per iteration
of both algorithms on the USPS data set in Figure 5.
The result agrees with the theoretically shown upper
bound and the simulations from Figure 2.

Figure 6 shows misclassification rate on the training
samples using MUSIK and M3 algorithm.

To test the MUSIK algorithm with sign-insensitive
kernel we generate an artificial dataset with 50 samples
of each class. We compare convergence speed of M3,
MUSIK, and MUSIK with semiNMF updates. Results
are shown in Figure 7.

15 Conclusions

We have derived simple multiplicative update rules
for solving the maximum-margin classifier problem in
SVMs. No additional parameter tuning is required
and the convergence is guaranteed. The updates are
straight-forward to implement. In practice the method
converges within a few iterations. Extensions to multi-
ple kernel learning are left as future work. The updates
could also be used as part of a subset method which
could potentially speed up MUSIK algorithm. MUSIK
shares the utility of M3 algorithm in that it is easy
to implement in higher-level languages like MATLAB
with application to small datasets. It also shares the

Figure 5: The objective function (4.12) versus training
iteration number (log scale) on the USPS handwritten
digits dataset for the M3 and the MUSIK algorithms
(down is better).

drawback of M3 in its inability to directly set a vari-
able to zero. However, we have shown MUSIK to have
an asymptotically faster rate of convergence compared
to M3 algorithm and we believe this provides a moti-
vation for further research in multiplicative updates for
support vector machines. Also the derivation was con-
structed in such a way that it highlights the connection
between SVM and NMF. We also show a connection to
the Kernel Adatron algorithm. Sequential updates sim-
ilar to ones in KA have been used to solve the NMF
problem and it would be interesting if heuristics used in
KA can be imported to solve NMF-type problems. Since
multiplicative updates emerge in different settings and
algorithms it might be interesting to find the pattern of
when such updates are possible and how to automati-
cally derive them. Our presentation of NMF and SVM
correspondence can be considered a step towards this
direction.

Acknowledgement

Thanks to Barak A. Pearlmutter for helpful comments.
The first author would like to acknowledge the support
from NIBIB grants 1 R01 EB 000840 and 1 R01 EB
005846. The second author was supported by NIMH
grant 1 R01 MH076282-01. The latter two grants were
funded as part of the NSF/NIH Collaborative Research
in Computational Neuroscience Program.

References

Figure 6: Percentage of the misclassification versus
the training iteration number (log scale) on the USPS
handwritten digits dataset for the M3 and the MUSIK
algorithms (down is better).

[1] Inderjit Dhillon and Suvrit Sra. Generalized nonnega-
tive matrix approximations with Bregman divergences.
In Y. Weiss, B. Schlkopf, and J. Platt, editors, Ad-
vances in Neural Information Processing Systems 18,
pages 283–290. MIT Press, Cambridge, MA, 2006.

[2] Chris Ding, Tao Li, and Michael I. Jordan. Convex and
semi-nonnegative matrix factorizations. LBNL Tech
Report 60428, 2006.

[3] J. Eggert and E. Körner. Sparse coding and NMF.
Neural Networks, 2004. Proceedings. 2004 IEEE Inter-
national Joint Conference on, 4:2529–2533, 25-29 July
2004.

[4] V. Franc, V. Hlavac, and M. Navara. Sequential
coordinate-wise algorithm for the non-negative least
squares problem. In Computer Analysis of Images and
Patterns, page 407, 2005.

[5] Thilo-Thomas Frieß, Nello Cristianini, and Colin
Campbell. The Kernel-Adatron algorithm: a fast and
simple learning procedure for support vector machines.
In Proc. 15th International Conf. on Machine Learn-
ing, pages 188–196. Morgan Kaufmann, San Francisco,
CA, 1998.

[6] Vojislav Kecman, Michael Vogt, and Te Ming Huang.
On the equality of kernel adatron and sequential mini-
mal optimization in classification and regression tasks
and alike algorithms for kernel machines. In ESANN,
pages 215–222, 2003.

[7] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and
K. R. K. Murthy. A fast iterative nearest point
algorithm for support vector machine classifier design.
Neural Networks, IEEE Transactions on, 11(1):124–
136, Jan 2000.

Figure 7: Convergence performance on a dataset con-
taining negative and positive values (shown on the left
side) with polynomial kernel of degree 3. MUSIK algo-
rithm with semiNMF updates from Section 5.1 is called
sMUSIK in the legend.

[8] Daniel D. Lee and Sebastian H. Seung. Algorithms
for non-negative matrix factorization. In NIPS, pages
556–562, 2000.

[9] Chih-Jen Lin. Projected gradient methods for nonneg-
ative matrix factorization. Neural Comp., 19(10):2756–
2779, October 2007.

[10] M. Mørup and L. H. Clemmensen. Multiplicative
updates for the LASSO,. Machine Learning for Signal
Processing, 2007 IEEE Workshop on, pages 33–38,
2007.

[11] C. L. Blake D. J. Newman and C. J. Merz. UCI
repository of machine learning databases, 1998.

[12] E. Osuna, R. Freund, and F. Girosi. An improved
training algorithm for support vector machines. Neural
Networks for Signal Processing [1997] VII. Proceedings
of the 1997 IEEE Workshop, pages 276–285, Sep 1997.

[13] J. Platt. Sequential minimal optimization: A fast
algorithm for training support vector machines, 1998.

[14] Ruslan Salakhutdinov and Sam Roweis. Adaptive over-
relaxed bound optimization methods. In Proceedings
of the International Conference on Machine Learning,
volume 20, pages 664–671, 2003.

[15] Bernhard Schölkopf and Alexander J. Smola. Learn-
ing with Kernels: Support Vector Machines, Regular-
ization, Optimization, and Beyond (Adaptive Compu-
tation and Machine Learning). The MIT Press, 2001.

[16] Fei Sha, Lawrence K. Saul, and Daniel D. Lee. Mul-
tiplicative updates for large margin classifiers. In
Proceedings of the Sixteenth Annual Conference on
Computational Learning Theory (COLT), Washington
D.C., USA, 2003.

[17] Fei Sha, Lawrence K. Saul, and Daniel D. Lee. Multi-
plicative updates for nonnegative quadratic program-
ming in support vector machines. In Sebastian Thrun
Suzanna Becker and Klaus Obermayer, editors, Ad-
vances in Neural Information Processing Systems 15,
Cambridge, MA, 2003. MIT Press.

[18] Rafal Zdunek and Andrzej Cichocki. Fast nonnegative
matrix factorization algorithms using projected gra-
dient approaches for large-scale problems. Computa-
tional Intelligence and Neuroscience, page 13, 2008.

Appendix

In the following subsections we show how to prove
the updates are non-increasing and bound the rate of
convergence.

Multiplicative updates and convergence We now
derive the update rules for the dual variables α. Let
us denote the matrices Φ(XA),Φ(XB) by the matrices
M ,N and the vectors αA,αB by u,v respectively.

The objective is now given by:

(15.43) F (v) =
1

2
‖Mu − Nv‖2

2 −
∑

i

vi

We define an auxillary function G(v,vt) with the
properties that G(v,v) = F (v) and G(v,vt) ≥ F (v).
The multiplicative update rule is found at each iteration
by minimizing the auxiliary function :

(15.44) vt+1 = arg min
v

G(v,vt)

We know that this does not increase the objective
function F ,as we have

(15.45) F (vt+1) ≤ G(vt+1,vt) ≤ G(vt,vt) = F (vt)

Define G as follows:

G(v,vt) = F (vt) + (v − vt)∇F (vt)(15.46)

+
1

2
(v − vt)L(vt)(v − vt)

where the diagonal matrix L(vt) is defined as

(15.47) Lab(v
t) = δab

(K−
BAu + K+

Bvt)a

vt
a

We see that G(v,v) = F (v) trivially. The second
property that G(v,vt) ≥ F (v) is satisfied if

(15.48) 0 ≤ (v − vt)T [L(vt) − KB](v − vt)

This can be split into three parts as follows:

L − KB = L1 + L2 + L3(15.49)

L1 = diag(
K−

BAu

v
)(15.50)

L2 = diag(
(K+

Bvt)

vt
) − K+

B(15.51)

L3 = K−
B(15.52)

We have L1 +L3 to be positive semidefinite by con-
struction in Section 5.2. If L2 can be shown to positive
semidefinite then the sum is positive semidefinite. L2 is
shown to be true using the argument in [8] which is as
follows:

Qab(v
t) = vt

a(L2(v
t))abv

t
b

(15.53)

νT Qν =
∑

ab

νaQabνb

(15.54)

=
∑

ab

(K+
B)abv

t
avt

b[
1

2
ν2

a +
1

2
ν2

b − νaνb](15.55)

=
1

2

∑

ab

(K+
B)abv

t
avt

b(νa − νb)
2(15.56)

≥ 0(15.57)

We select the minimum of G. This is found by
setting the gradient of G to zero.

vt+1 = vt −
vt

K−
BAu + K+

Bv
⊙ (KBvt − KBAu − 1)

= vt ⊙
K+

BAu + K−
B v + 1

K−
BAu + K+

Bv

(15.58)

This is the update rule for v and similarly we can derive
the update rule for u.

Convergence rate Let the fixed point be α∗ . Let us
denote K(XA,XA)α∗

A by z+ and K(XA,XB)α∗
B by

z−. If we choose an ith non-support vector coefficient
from αA, then we have z+

i − z−
i ≥ 1.

Let the multiplicative factor be denoted by γi. We
then have:

1

γi
=

z+
i

z−
i + 1

(15.59)

= 1 +
z+

i − z−
i − 1

z−
i + 1

(15.60)

≥ 1 +
K(xi,w) − 1

z+
i

(15.61)

where we have w =
∑

i α∗
i xiyi is the normal vector to

the maximum margin hyperplane. We have used the
following:

z+
i − z−

i =
∑

j∈A

K(xi,xj)α
∗
j −

∑

k∈B

K(xi,xk)α∗
k

= K(xi,w)(15.62)

We now obtain a bound on the denominator:

z+
i =

∑

j∈A

K(xi,xj)α
∗
j(15.63)

≤ max
k∈A

K(xi,xk)
∑

j∈A

α∗
j(15.64)

≤
√

K(xi,xi) max
k∈A

√

K(xk,xk)K(w,w)(15.65)

We have used the Cauchy-Schwartz inequality for ker-
nels and an upper bound for the sum of vector α∗

A.
We do a similar analysis by perturbing an ith non-

support vector coefficient from group B. Combining the
analysis, we have a lower bound as follows:

1

γi
≥ 1 +

K(xi,w) − 1
√

K(xi,xi) maxk

√

K(xk,xk)K(w,w)

