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ABSTRACT

Non-negative matrix factorization (NMF) is an algorithm for
decomposing multivariate data into a signal dictionary and
its corresponding activations. When applied to experimental
data, NMF has to cope with noise, which is often highly cor-
related. We show that correlated noise can break the Donoho
and Stodden separability conditions of a dataset and a regu-
lar NMF algorithm will fail to decompose it, even when given
freedom to be able to represent the noise as a separate feature.
To cope with this issue, we present an algorithm for NMF
with a generalized least squares objective function (glsNMF)
and derive multiplicative updates for the method together with
proving their convergence. The new algorithm successfully
recovers the true representation from the noisy data. Robust
performance can make glsNMF a valuable tool for analyzing
empirical data.

Index Terms— NMF, GLS, parts based representation,
correlated noise

1. INTRODUCTION

Since the introduction of multiplicative updates for non-
negative matrix factorization (NMF) [1], the algorithm has
gained general recognition. Simplicity of implementation, an
adaptive learning rate and automatic satisfaction of positivity
constraints are in part responsible for the wide acceptance
of the algorithm. It has been successfully used to analyze
functional brain imaging data [2, 3, 4], gene expression [5],
and other empirical datasets.

Lee and Seung provide two updates for NMF: one is based
on the least squares (LS) criteria and the other on Kullback-
Leibler (KL) divergence. In this study we focus on LS up-
dates, for which the data model is:

X = WH + ǫ, (1)

where each entry inX, W andH is greater than or equal
to zero andǫ is Gaussian noise. Subsequent sections provide
further details.
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The LS formulation implicitly assumes that the noise is
white. This is a widely used assumption and it is valid in
many realistic cases with large number of independent noise
sources. However, in many experimental settings noise is
more complicated and is not limited to white sensor noise.
In these environments, noise represents background activity,
which can have complex covariance structure. Ignoring the
structure in the noise can change the results of NMF substan-
tially.

Donoho and Stodden introduced the notion of a separa-
ble factorial articulation family [6] as a collection of points
obeying three conditions: generative model, separabilityand
complete factorial sampling. Datasets satisfying these con-
ditions are guaranteed to be properly factored by any correct
NMF algorithm. Presence of correlated noise may, however,
violate the conditions and render otherwise separable dataset
not factorable by NMF. We demonstrate an example in which
a dataset that otherwise satisfies the Donoho and Stodden con-
ditions is not factored properly by the regular NMF when con-
taminated with correlated noise. We also show that despite a
reasonable expectation that an NMF model of sufficient rank
can recover correlated components in the noise simply as nui-
sance features, NMF fails to do so and most features are re-
covered incorrectly. Undermodeling the noise may lead to a
misinterpretation of results when applied to real dataset with-
out known ground truth.

As a solution, we introduce a generalized least squares
NMF (glsNMF) algorithm that takes the correlation struc-
ture of the noise into account. We derive multiplicative up-
dates for the algorithm providing a proof of their convergence
and demonstrate the algorithm’s performance on a synthetic
dataset. We show that the new algorithm handles the noisy
data better than the LS based algorithm and produces the ex-
pected unique factors.

2. NMF

NMF is a tool producing a low rank approximation to a non-
negative data matrix by splitting it into a product of two non-
negative matrix factors. The constraint of non-negativity(all
elements are≥ 0) usually results in a parts-based represen-
tation making NMF different from other factorization tech-



Fig. 1. Randomly selected samples from the swimmer dataset
of [6], which consists of 256 total images with all possible
combination of limbs positions.

niques yielding more holistic representations, such as princi-
pal component analysis (PCA) and vector quantization (VQ).

Using standard notation [1, 6], we formally define NMF
task as follows. Given a non-negativem × n matrix X, rep-
resent it with a product of two non-negative matricesW ,H

of sizesm × r andr × n respectively:

X ≈ WH. (2)

The non-negativity constraint corresponds to the intuitive no-
tion of features adding up, without canceling each other, to
give the resulting data.

Lee and Seung [1] describe two multiplicative update
rules forW andH which work well in practice. The updates
correspond to two different cost functions representing the
quality of approximation. In this work, we use the Frobenius
norm for the cost function:

E =
1

2
‖X − WH‖F (3)

and the corresponding updates are:

W = W ⊙
XHT

WHHT
(4)

H = H ⊙
W T X

W T WH
, (5)

where ‖.‖F denotes the Frobenius norm and the operator
⊙ represents element-wise multiplication. Division is also
element-wise. We have omitted iteration indices for clarity. It
should be noted that the cost function to be minimized is con-
vex in eitherW or H but not in both [1]. As the algorithm
iterates using the updates (4) and (5),W andH converge to
a local minimum of the cost function.

The slightly mysterious form for the above updates can
be understood as follows. A simple additive update forH is
given by:

H = H + η ⊙ (W T X − W T WH) (6)

If the learning rate given by the matrix elements ofη are
all set to some small positive number then this is the con-
ventional gradient descent. However, setting the learningrate

Fig. 2. Random samples from the swimmer dataset contami-
nated by correlated noise. Note the salient spatial correlation
with the shape of the swimmer’s torso to the left of the swim-
mer.

Fig. 3. Noise covariance for all 1024 image pixels shows the
expected spatial correlations. The covariance is very close
to identity, only the 90 by 90 close up on the right shows
the correlated part. Such a covariance matrix is favorable to
the conventional least squares analysis because it satisfies the
assumptions of the method.

matrix as follows:

η =
H

W T WH
, (7)

where division is element-wise, produces the NMF updates.

3. FAILURE MODE

An example of a separable factorial articulation family is the
swimmer dataset presented in [6]. The dataset contains 256
32 × 32 images of a swimmer with all possible combinations
of limbs positions, as shown in Figure 1.

In order to study the effect of the correlated noise on the
algorithm we have constructed such noise, where a small part
of the image is spatially correlated. Figure 2 shows several
random samples from the swimmer dataset of Figure 1 con-
taminated by the correlated noise.

The LS objective function of (3) can be derived from the
Gaussian likelihood with noise covariance of the formσ2I.
Note that correlated noise results in a differently structured
covariance matrix. The covariance of the correlated noise is
shown in Figure 3. It is clearly very close to a diagonal ma-
trix. For comparison, the figure also shows a close up image
of a section of the covariance, where there are correlations.
Correlations among the 2% of the image pixels are high as
demonstrated by the high contrast of the covariance image in



Fig. 4. Correlated noise samples that were added to the swim-
mer dataset. Note the salient spatial correlation.

the figure. Several samples of the noise are shown in Fig-
ure 4. The correlated part has the shape of the swimmer’s
torso shifted to the left of the original torso position. In sum-
mary the noise is mostly white, with a small locally concen-
trated correlated component.

A reasonable expectation of NMF’s behavior on this
dataset would be a result that has the correlation torso as a
separate feature with the other features correctly recovered.
This common-sense behavior would go along with other
matrix factorization techniques such as independent compo-
nent analysis (ICA), which exploit this feature for denoising.
Surprisingly, we have observed quite different behavior. A
typical result is shown in Figure 5, where it becomes clear
that correlated noise affects estimation of all of the features,
as opposed to be estimated just as a separate one. For com-
parison the correct factorization that is obtained by NMF
from the noiseless dataset is shown in Figure 6. Note that
we have observed similar behavior even when using the KLD
divergence based NMF objective, although we do not pursue
this finding further in this work.

Introduction of the torso-shaped correlation in the noise
violates theseparability condition from [6]. The condition
requires that each part/articulation pair’s presence or absence
in the image is indicated by a certain pixel associated to that
pair. However, the torso-shaped correlation, when present,
can overlap with limbs in some positions. Note that condi-
tions of generative model and complete factorial sampling are
still satisfied, because the correlation can always be treated as
a separate feature.

4. PROPOSED SOLUTION

We argue that in practical applications of NMF one needs to
model the noise adequately. Here we propose an NMF al-
gorithm that alleviates the problem caused by the correlated
noise.

One of the objective functions for non-negative matrix
factorization proposed in [1] is the least squares error (LSE)
of (3). After rewriting (3) in the matrix form:

E =
1

2
Tr((X − WH)T (X − WH)), (8)

Fig. 5. 20 features (columns of theW matrix) as extracted
by the regular NMF algorithm with the LS objective function
from the dataset contaminated by correlated noise.

the assumption of zero mean noise with unit standard devia-
tion becomes explicit.

For optimization purposes, the formulation is also valid
for noise with covariance structureσ2I. Richer noise struc-
tures, including those with diagonal covariance or correlated
noise, are not captured by such a formulation. The former
problem has been addressed in [7]. In this case the scaling of
each dimension by a corresponding positive variance is per-
formed. Scaling by the positive constants does not alter the
original formulation of multiplicative updates.

We address the problem of generalized least squares
(GLS) of (9), whereC is the noise covariance, and derive
multiplicative updates for this general form of the objective:

E =
1

2
Tr((X − WH)T C−1(X − WH)) (9)

4.1. Derivation of the updates

To simplify the notation, we define the precision matrix,S =
C−1. First, we rewrite the objective:

E =
1

2
(Tr(XT SX) + Tr(HT W T SWH)− (10)

Tr(XT SWH) − Tr(HT W T SX)).

Then find the derivatives:

∂E

∂W
= S(WHHT − XHT ) (11)

∂E

∂H
= W T S(WH − X), (12)



Fig. 6. Features extracted by NMF from the noiseless swim-
mer dataset. There only 16 unique features and only they are
shown here.

where we have used the fact thatS is symmetric. Finally, we
obtain the following multiplicative updates for the GLS error
function:

W = W ⊙
S+XHT + S−WHHT

S−XHT + S+WHHT
(13)

H = H ⊙
W T S+X + W T S−WH

W T S−X + W T S+WH
(14)

In these updates, the precision matrix is split into two
parts as follows:

S+

ij =











Sij Sij > 0,

Sij + λ i = j,

0 otherwise,

S−

ij =











|Sij | Sij < 0,

|Sij | + λ i = j,

0 otherwise.

In the matrix representation the split ofS is expressed as:

S+ = Ŝ+ + λI

S− = Ŝ− + λI

S = Ŝ+ − Ŝ−

whereλ is the minimal negative eigenvalue ofŜ− or 0 if Ŝ−

is positive semidefinite or empty. This ensures thatS− is
positive semidefinite – a condition required for convergence
properties of the updates. We defer the proof to the appendix.

4.2. Complexity

Introduction ofS+ andS− added complexity to the updates,
namely, four additional matrix multiplications and two matrix

Fig. 7. 20 features extracted from the noisy dataset by
glsNMF.

summations. Repeating parts of expressions in the numera-
tor and the denominator of equations (14) and (13) can be
precomputed before each respective updates. After that only
multiplications by parts of the precision matrix and summa-
tion of the result are required.

4.3. Covariance estimation

In order for glsNMF to function properly, a good estimate
of the noise covariance is required. This is sometimes possi-
ble to obtain as background measurement of the system with-
out the task of interest. This is especially true in functional
electromagnetic brain imaging (an area of increasing use of
NMF [4]), where sampling rates allow collection of sufficient
samples at least for spatial only analysis. Many models that
use covariance matrix, like glsNMF, assume that it is com-
puted elsewhere.

5. RESULTS

The glsNMF algorithm was applied to the previously intro-
duces noisy swimmer dataset. As before, the number of fea-
tures was set to 20.

The features obtained by glsNMF are shown in Figure 7.
Compare with the features typically obtained by NMF 5. Note
that we have run both algorithms many times changing the
starting point. The starting points in the figures are the same.

NMF applied to the noisy dataset produces features span-
ning several swimmer configurations at once. Thus, it is hard
to identify the original noise free image. In addition to that
there is a spurious feature – the correlated part of the noise. It
is not only present as a feature by itself but also contaminates
many other features extracted by the algorithm.



Features extracted by glsNMF are sparse and completely
recover the limbs. Furthermore, the correlated part of the
noise is not present as a separate feature or as a part of any
other features. Although some residual noise still remains
even after convergence it does not destroy the parts based rep-
resentation.

6. DISCUSSION

We have demonstrated a possibility of an unexpected failure
mode of NMF in the case of data contaminated by correlated
noise. This is almost the only situation when dealing with
experimental datasets. Issue of noise has been previously ad-
dressed in NMF algorithms by rescaling each of the estimates
by the amount of noise variance (uncertainty) [7], or by us-
ing Gaussian process priors to smooth out the estimates [8].
Results similar to [7] can probably be achieved using the ad-
vances in research on weighted NMF [9]. An approach that
has formulation similar to our suggested solution was pre-
sented in [10]. However, there the goal was not to target cor-
related noise and also the novelty of our formulation is the
multiplicative updates and their convergence proof. In fact, a
solution by a projected gradient [11] method is easily possible
and we have also derived it for our method but leave it out.

There are a multitude of extensions to NMF, such as ad-
ditional sparsity, convolutive algorithm etc. [12, 13, 14]. We
believe some of them can benefit from using GLS objective
function.

7. CONCLUSIONS

A growing interest in application of NMF to experimental
datasets [3, 4, 2, 5] requires special handling of issues intro-
duces by unavoidable presence of noise. We have demon-
strated a failure mode of NMF algorithm in which correlated
noise can violate the separability assumption of unique fac-
torization and hamper the results hurting interpretability of
solutions. We also proposed a solution to correlated noise
problem – glsNMF algorithm able to recover features from
contaminated data. For this we have derived a multiplica-
tive update and presented a convergence proof. Our future
work includes application of the method to functional brain
imaging and gene expression datasets as well as extending the
method to deal with large dimensionality of the input space
which makes the covariance matrix hard to handle. It is also
possible to perform glsNMF with simultaneous estimation of
the covariance matrix which we also leave for future work.

8. APPENDIX

Convergence proof

Consider the problem for a single column ofH denoted byh.
The corresponding column ofX is given byx. The objective

is now given by:

F (h) =
1

2
(x − Wh)T S(x − Wh) (15)

We define an auxiliary functionG(h,ht) with the proper-
ties thatG(h,h) = F (h) andG(h,ht) ≥ F (h). The multi-
plicative update rule is found at each iteration by minimizing
the auxiliary function :

ht+1 = arg min
h

G(h,ht) (16)

Note that this does not increase the objective functionF ,
as we have

F (ht+1) ≤ G(ht+1,ht) ≤ G(ht,ht) = F (ht) (17)

DefineG as follows:

G(h,ht) = F (ht) + (h − ht)∇F (ht) (18)

+
1

2
(h − ht)K(ht)(h − ht)

where the diagonal matrixK(ht) is defined as

Kab(h
t) = δab

(W T S+Wht + W T S−x)a

ht
a

(19)

G(h,h) = F (h) holds trivially. G(h,ht) ≥ F (h) holds
if

(h − ht)T [K(ht) − W T SW ](h − ht) ≥ 0 (20)

DenoteM = K(ht)−W T SW and it split into parts as
follows:

M = P1 + P2 + P3 (21)

(P1)ab = δab

(W T S+Wht)a

ht
a

− (W T S+W )ab (22)

(P2)ab = δab

(W T S−x)a

ht
a

(23)

(P3)ab = (W T S−W )ab (24)

If eachPi is positive semidefinite then their sumM is
also so.P2 is trivially positive semidefinite since it is a di-
agonal matrix with non-negative entries.P3 is also posi-
tive semidefinite since by construction in Section 4.1 we ob-
tain a positive semidefiniteS− = LLT , which givesP3 =
(W T L)(W T L)T also positive semidefinite.

We showP2 to be positive semidefinite using the proof



structure of [1] which is as follows:

Qab(h
t) = ht

a(P2)abh
t
b (25)

νT Qν =
∑

ab

νaQabνb (26)

=
∑

ab

(W T S+W )abh
t
aht

b[
1

2
ν2

a +
1

2
ν2

b − νaνb]

=
1

2

∑

ab

(W T S+W )abh
t
aht

b(νa − νb)
2

≥ 0

Setting the gradient ofG to zero, we obtain an expression
for the minimum ofG.

∆ =
ht

(W T S+Wht + W T S−x)
⊙ (W T S(Wht − x))

ht+1 =ht − ∆

=ht ⊙
W T S+x + W T S−Wht

W T S−x + W T S+Wh

This is the update rule forh and similarly we can derive
the update rule forw.
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