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Abstract—Support Vector Machines (SVM) and Nonnegative
Matrix Factorization (NMF) are standard tools for data analysis.
We explore the connections between these two problems, thereby
enabling us to import algorithms from SVM world to solve NMF
and vice-versa. In particular, one such algorithm developed to
solve SVM is adapted to solve NMF. Empirical results show that
this new algorithm is competitive with the state-of-the-art NMF
solvers.

I. INTRODUCTION

Life is full of positive things. For instance, consider a
person’s height or salary. They are always positive or at the
very least zero. When a quantity is zero or greater we say it is
nonnegative. Quite a few real-world observations/data consist
of positive or to be precise, nonnegative values. Examples
include color intensities in images, chemical concentrations
in experiments or radiation dosages in cancer treatments.

Why is this important? If algorithms do not take nonnegativ-
ity in to account, we could end up with negative “solutions”
which do not have a physical interpretation. Of course, we
could use a simple strategy of setting the negative components
to zero but that could lead to a sub-optimal solution. Therefore,
it is important to account for nonnegativity in the problem
formulation.

An important problem formulation in classification is the
Support Vector Machine (SVM). Similarly, Nonnegative Ma-
trix Factorization (NMF) is a standard formulation for low
rank approximations. Both formulations require nonnegativity
on the recovered solutions. We study the connections between
these two problems thereby enabling us to export algorithms
from one problem domain to solve the other. In particular, we
show how an SVM algorithm can be adapted to solve NMF.

II. PRELIMINARIES AND PREVIOUS WORK

We give an introduction to NMF and the SVM problem
formulations. Also, some of the algorithms for solving these
are discussed.

A. Nonnegative Matrix Factorization

We present a brief introduction to NMF mechanics using
notation that is standard in NMF literature. NMF is a tool
to split a given nonnegative data matrix into a product of two
nonnegative matrix factors [1]. The constraint of nonnegativity
(all elements are ≥ 0) usually results in a parts-based repre-
sentation and is different from other factorization techniques

which result in more holistic representations (e.g. principal
components analysis (PCA) and vector quantization (VQ)).

Given a nonnegative m×n matrix X , we want to represent
it with a product of two nonnegative matrices W ,H of sizes
m× r and r × n respectively:

X ≈WH.

The NMF problem corresponding to Frobenius norm for the
reconstruction error is given by:

min
W ,H

1

2
‖X −WH‖2F

s.t.W ≥ 0,H ≥ 0 (1)

In [1], simple multiplicative updates for W and H are
presented which work well in practice and are as follows:

W ←W � XHT

WHHT
, (2)

H ←H � W TX

W TWH
, (3)

where the operator � represents element-wise (Hadamard)
multiplication. Division is also element-wise. It should be
noted that the cost function to be minimized is convex in either
W or H but not in both [1].

The slightly mysterious form for the above updates can
be understood from the following description and is adapted
from [1]. A simple additive update for H is given by:

H = H + η � (W TX −W TWH)

If the learning rate given by the matrix elements of η are all
set to some small positive number then this is the conventional
gradient descent. However, setting the learning rate matrix as
follows:

η =
H

W TWH

gives us the NMF updates. We note the multiplicative factors
for the updates correspond to the negative component of the
derivative divided element-wise by the positive component of
the derivative respectively.

Other algorithms have been proposed to solve the NMF
problem. Some of these are the projected gradient method [2]
which we shall refer to as ProjGrad, a block pivot-
ing method [3] called BlockPivot, a sequential constrained
method [4] called FastHals and finally a greedy coordinate
descent method [5] called GCD.
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B. Support Vector Machines

Let the set of labeled examples be {(si, yi)}Ni=1, with binary
class labels yi = ±1 corresponding to two classes, denoted
by A and B respectively. Let the mapping Φ(si) be the
representation of the input datapoint si in space Φ, where
we denote the space by the name of the mapping function
performing the transformation. We now consider the problem
of computing the maximum margin hyperplane for SVM in
the case where the classes are linearly separable and the
hyperplane passes through origin (we will relax this constraint
presently.).

The dual quadratic optimization problem for SVM [6] is
given by minimizing the following loss function:

S(α) =
1

2

n∑
i,j=1

αiαjyiyjk(si, sj)−
n∑

i=1

αi (4)

subject to αi ≥ 0, i ∈ {1..n},

where k(si, sj) is a kernel that computes the inner product
Φ(si)

T Φ(sj) in the space Φ by performing all operations only
in the original data space on si and sj , thus defining a Hilbert
space Φ.

Recently, the cost of training of kernel SVM’s has shifted
the focus of the SVM community back to linear SVM for large
scale applications. This has lead to the formulation of very
efficient linear SVM solvers which converge to a ε precision
solution in linear (in the number of training points) time [7],
[8].

III. CONNECTIONS BETWEEN NMF AND SVM

In this section, we will formalize some insights in to
the similarities between the NMF and SVM problems. In
particular, we will first show how to view SVM as a matrix
factorization. Secondly, we will show how the subproblem in
the alternate minimization scheme for NMF can be reduced
to a single class SVM.

A. SVM as Matrix Factorization

Consider the Equation (4). The first sum can be split into
three terms: two terms contain kernels of elements that belong
to the same respective class (one term per class), and the third
contains only the kernel between elements of the two classes.
This rearrangement of terms allows us to drop class labels
yi, yj from the objective function. Denoting k(xi,xj) with
kij and defining ρij = αiαjkij for conciseness, we have:

min
α

1

2

∑
ij∈A

ρij − 2
∑
i∈B
j∈A

ρij +
∑
ij∈B

ρij

− n∑
i=1

αi (5)

subject to αi ≥ 0, i ∈ {1..n}.

Noticing the square and the fact that kij = Φ(xi)
T Φ(xj) we

rewrite the problem as:

min
α

1

2
‖Φ(XA)αA − Φ(XB)αB‖22 −

∑
i∈{A,B}

αi (6)

subject to αi ≥ 0,

where the matrices XA,XB contain the datapoints corre-
sponding to groups A and B respectively with the stacking be-
ing column-wise. The map Φ applied to a matrix corresponds
to mapping each individual column vector of the matrix using
Φ and stacking them to generate the new matrix. The vectors
αA and αB contain the dual variables of the two groups A and
B respectively. We will use the vector α to denote the concate-
nation of vectors αA,αB . Expression (6) is a form of matrix
factorization problem and resembles NMF with an additional
term in the objective [1]. This connection was exploited to
give multiplicative updates for solving SVM [9]. The above
formulation enables other metrics D(Φ(XA)αA||Φ(XB)αB)
than least squares for SVM such as more general Bregman
divergence [10]. However, to be computationally efficient the
metric used has to admit the use of the kernel trick.

B. NMF Reduced to Sequence of SVMs

We solve NMF by using the general framework of alternate
minimization of the matrix factors. This leads to a sequence
of convex sub-problems. We show that each of these can be
reduced to solving a hard-margin single class SVM problem.
First, we define the Nonnegative Least Squares (NNLS) prob-
lem which will aid us in this reduction. Let W ∈ Rm×n be
a matrix and x ∈ Rm a column vector. The nonnegative least
squares problem (NNLS) is to find a column vector h ∈ Rn

which solves the following problem:

min
h

1

2
‖x−Wh‖22

s.t. h ≥ 0 (7)

If in addition, we have that the inputs W ,x are nonnega-
tive, we get the Totally Nonnegative Least Squares (TNNLS)
formulation.

Now, we are in a position to sketch the reduction. First,
we show that TNNLS can be reduced to a single class SVM.
Second, that each sub-problem of NMF can be reduced to a
TNNLS.

Let D denote the diagonal matrix whose diagonal is given
by the vector 1

WTx . Also, let h = Dz. Then,

G(z) =
1

2
‖x−WDz‖22

=
1

2
zT (WD)T (WD)z − xTWDz +

1

2
xTx

=
1

2
zT (WD)T (WD)z − 1Tz +

1

2
xTx

Ignoring the 1
2x

Tx, which does not change the location of the
minimum, we see that it is an instance of the SVM objective
in equation 4, with α corresponding to z and si corresponding
to WiDii with the kernel function being linear. We have
a single class maximum margin classifier passing through
origin where the datapoints given by {WiDii}ni lie in the
positive orthant. The reduction was used to efficiently solve
the TNNLS problem leveraging fast SVM solvers [11].

The NMF problem can be written as a sequence of sub-
problems by using the framework of alternate optimization as
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follows:

min
H

1

2
‖vec(X)− (I ⊗W )vec(H)‖2F

s.t.H ≥ 0

min
W

1

2
‖vec(XT )− (I ⊗H)vec(W T )‖2F

s.t.W ≥ 0 (8)

Note that the TNNLS problems in (8) can be cast as single-
class SVM problems and therefore NMF can be reduced to a
sequence of SVM problems.

IV. ALGORITHM FROM SVM TO NMF

A fixed-point algorithm was presented to solve SVM [12].
We adapt the algorithm to solve NMF by exploiting the
connection between SVM and NMF as shown in Section III-B.
We use the previously mentioned framework of alternate
optimization for the matrix factors W and H . As noted
previously, it is sufficient to present the optimization scheme
for one the factors while the other is fixed. Fix the matrix W
in NMF (1) and solve the resulting convex sub-problem by
the following updates for matrix H:

H ← Q−1(W>X + (QH −W>X − µH)+) (9)

where Q = W>W and µ = 1.9(min(eig(Q))). Analogously,
we have updates for optimizing the matrixW while the matrix
H is fixed.

In practice, we found the first iteration of these updates to
be slow. To ameliorate this, we initialize the matrix factors
by using random matrices with entries in [0, 1] and running
multiplicative updates as given in (2) and (3) for the first few
iterations and then switch to the above updates. Combining
multiplicative updates initialization and the above updates
[12], we obtain a novel approach for solving NMF which we
denote by the name of its component algorithms as M&Ms.

The fixed-point operator corresponding to the update of
matrix H has to be iterated to converge to the solution of
the sub-problem. We use a stopping parameter ε to control the
quality of solution of the sub-problem. We use the termination
condition of requiring the Frobenius norm of the difference of
the updated matrix H and its value at the previous iteration
to be less than ε.

V. EXPERIMENTS FOR NMF

In this section, we compare our M&Ms algorithm with
the other state-of-the-art solvers for NMF. Running times are
presented for all the algorithms when applied to two real-world
datasets.

Experiments report scaled reconstruction error (‖X −
WH‖F ) instead of objective value for convenience of display.
All experiments were run on a 2.8 GHz machine with 8GB
RAM running Linux. The number of cores was set to 1. Our
M&Ms algorithm was implemented in MATLAB similar to
the other algorithms.

A. Datasets

We consider the following two real-world datasets:
1) CBCL face dataset consists of 2429 images of size

19 × 19 and can be obtained at http://cbcl.mit.edu/cbcl/
software-datasets/FaceData2.html.

2) ORL face dataset consists of 400 images of size 112×92
and can be obtained at http://www.cl.cam.ac.uk/research/
dtg/attarchive/facedatabase.html.

B. Methodology

We applied our algorithm on the CBCL face dataset with
rank set to 49. The running times of our algorithm and
the others is shown in Figure 1. Similarly, we applied our
algorithm to the ORL face dataset with rank set to 25. The
running times are shown in Figure 1.

The matrices W and H are initialized by multiplicative
updates given by (2) and (3), and the stopping tolerance ε
is initialized to 0.1. It is halved for every 10 subsequent
iterations.

C. Discussion

Initial experiments show that our algorithm is competitive
with the state-of-the-art algorithms. More extensive compari-
son needs to be done. However, the simplicity of our algorithm
makes a good argument for taking a closer look at SVM
algorithms and thereby develop efficient NMF algorithms.

VI. PROPOSED FUTURE WORK

Nonnegative Quadratic programming (NQP) involves opti-
mizing a quadratic objective function subject to nonnegative
constraints. It is defined as follows:

min
x

1

2
x>Ax+ b>x

x ≥ 0

NQP encompasses a wide umbrella of important problems
such as Least Absolute Shrinkage and Selection Operator
(LASSO), Support Vector Machines (SVM), Nonnegative
Least Squares(NNLS) and sub-problems of Nonnegative Ma-
trix Factorization (NMF). Formulation for LASSO is:

min
h

1

2
‖x−Wh‖22 + λ‖h|1

s.t. h ≥ 0

An isomorphism was established between sparse separa-
tion and ε-SVM regression [13] and was used it kernelize
sparse separation. Similarly, a connection between LASSO and
SVM’s was established and exploited for the kernel version of
LASSO [14]. Furthermore, the kernel adatron (KA) algorithm
for solving SVM [15] resurfaced as an NNLS algorithm [16].

Since the problems we have formulated so far are all NQP’s
it is conceivable that algorithms developed for one can be
adapted to solve others. We would like to understand the
connections betweens these various special cases of NQP and
use the insight to develop faster algorithms among them.



4

0.1 1 10 100

10

100

seconds

block

fast

gcd

pgrad

M&Ms

10 25.1 63.1 100

5.17

5.19

5.22

5.24

5.27

5.29

seconds

R
e
co

n
st

ru
ct

io
n

 e
rr

o
r

Fig. 1. Comparison between our algorithm M&Ms and several state of the art algorithms BlockPivot, FastHals, GCD, ProjGrad. Running time vs scaled
reconstruction error for the CBCL face dataset (Left). Similarly for the ORL face dataset (Right).
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