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Introduction:

Unsupervised data analysis approaches have been widely used in recent years and have become instrumental in
establishing new research directions impossible with more traditional supervised approaches, such as the study of
the default mode network of the brain (Raichle and Snyder, 2007). Growing interest in unsupervised analysis of
multi-modal data, multi-subject studies, whole brain activity and other datasets involving multiple interacting
variables, have increased demand for multivariate unsupervised techniques (Sui et al., 2011). However there is
still relatively little work on the examination of the full relationships among interacting variables in an
unsupervised fashion. In this work, we propose a novel approach to address the problem of identifying these
higher-order interactions and demonstrate it with an application to a large multi-task fMRI dataset.

Methods:

The crux of our approach is to partition random variables into "factors" based on the mutual information among
these variables. Roughly, the approach fills a niche between simpler pairwise clustering and complex graphical
models (see Figure 1). To tackle the combinatorial difficulty of searching for high-order interactions, we present a
practical method by making choices different from those of graphical models (GM): no detailed structure,
approximate independence of factors, and a smoothed objective. We aim at capturing various types of
interdependencies among random variables including three cases in the lower part of Figure 1. Since each
resulting factor contains random variables that are mutually coregulated, and the whole approach is enabled by a
spectral decomposition of the hypercube, we call our approach coregulation analysis via spectra of a hypercube
(CASH).

Results:

We extracted features from three well-known paradigms: an auditory sensorimotor task, a Sternberg working
memory task and a auditory oddball task using GLM from 68 patients with schizophrenia and 86 controls as part
of the Mind Clinical Imaging Consortium (MCIC) study. All details about the tasks and data collection and
processing are summarized in Kim et al. (2010). Each of the subject had 29 spatial ICA components which we
used as features to factor. When using datasets comprised of complete subject sets for patients as well as for
controls, we obtained a factoring of features displayed in Figure 2. Bootstrap analysis of CASH convergence
trajectories as well as the dispersion of solutions for the groups of patients and controls show stable and
significant difference between these groups (Figure 3). Lower objective values for patients meaning tighter
relationship between features supports previous findings of "more similar" activations in schizophrenia patient than
controls (Calhoun et al., 2006; Michael et al., 2009) but goes well beyond previous work by incorporating a much
richer set of features. For example, a notable feature is that in the patients temporal lobe is grouped with motor
areas (factor 1 in Figure 2), whereas in controls it is grouped with the higher cognitive areas (factor 3 in Figure
2). Although we are not working with the data from actively hallucinating subjects, the lack of higher cognitive
control over temporal areas in the patients may be indicative of schizophrenia. In controls high-level intrinsic
networks co-acting with temporal lobes may be controlling perception of the internal voice (van Lutterveld et al.,
2011).

Conclusions:

We have developed a framework for capturing arbitrarily complex, multi-way interactions among
random variables based on information theory. Our results are consistent with and extend known findings from
univariate and second order-based methods, thus arguing for approaches such as CASH that can capture true
higher-order dependencies in datasets from complex domains such as neuroscience.

Modeling and Analysis Methods:
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Multivariate modeling
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