
Automatic Differentiation of Sketched Regression

Hang Liaoa Barak A. Pearlmutter∗ Vamsi K. Potluru† David P. Woodruffa

CMUa NUIM∗ Comcast Research†

Abstract

Sketching for speeding up regression prob-
lems involves using a sketching matrix S to
quickly find the approximate solution to a
linear least squares regression (LLS) prob-
lem: given A of size n × d, with n � d,
along with b of size n × 1, we seek a vector
y with minimal regression error ‖Ay − b‖2.
This approximation technique is now stan-
dard in data science, and many software sys-
tems use sketched regression internally, as a
component. It is often useful to calculate
derivatives (gradients for the purpose of op-
timization, for example) of such large sys-
tems, where sketched LLS is merely a com-
ponent of a larger system whose derivatives
are needed. To support Automatic Differen-
tiation (AD) of systems containing sketched
LLS, we consider propagating derivatives
through LLS: both propagating perturba-
tions (forward AD) and gradients (reverse
AD). AD performs accurate differentiation
and is efficient for problems with a huge num-
ber of independent variables. Since we use
LLSS (sketched LLS) instead of LLS for rea-
sons of efficiency, propagation of derivatives
also needs to trade accuracy for efficiency,
presumably by sketching. There are two ap-
proaches for this: (a) use AD to transform
the code that defines LLSS , or (b) approx-
imate exact derivative propagation through
LLS using sketching methods. We provide
strong bounds on the errors produced due to
these two natural forms of sketching in the
context of AD, giving the first dimension-
ality reduction analysis for calculating the
derivatives of a sketched computation. Our
results crucially depend on a novel analysis of

Proceedings of the 23rdInternational Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2020, Palermo,
Italy. PMLR: Volume 108. Copyright 2020 by the au-
thor(s).

the operator norm of a sketched inverse ma-
trix product in this context. Extensive ex-
periments on both synthetic and real-world
experiments demonstrate the efficacy of our
sketched gradients.

1 Introduction

Linear least-squares regression (LLS) is one of the old-
est tool in the data scientist’s toolkit, dating back to
Gauss. Modern systems support LLS in libraries, with
many variants for trading speed vs accuracy, for vari-
ous kinds of sparse data, etc. Just as an FFT routine
might be called from deep inside a larger program,
LLS is often performed as a single step inside a much
larger computational process. Deep learning, i.e., dif-
ferentiable programming, systems are evolving to al-
low gradients and other derivatives to be automati-
cally computed more freely and more efficiently: for in-
stance, to allow complicated procedures invoking many
library routines to be automatically differentiated, and
to allow nesting of differentiation. For this program
to come to fruition, we must know how to efficiently
calculate both forward- and reverse-mode derivatives
of all available numeric library functions. Here, we
are concerned with how to perform AD on a system
which internally uses sketched LLS. We first review
linear regression and its sketched approximation, and
the favorable complexity and accuracy bounds which
sketched LLS provides. We then proceed to explore
how the derivative (forward and reverse) of sketched
LLS can be expressed. The näıve way of taking these
derivatives results in poor error bounds. We there-
fore explore more sophisticated ways to calculate these
derivatives, using a novel independently-sketched ap-
proximation to the derivative of a sketched LLS, and
derive favorable error bounds. An expository example
is presented in which sketched LLS is used as a routine
within a larger system, and joint gradient optimization
of the entire process is performed, requiring AD of the
sketched LLS.



Automatic Differentiation of Sketched Regression

1.1 Linear Regression

Consider the classical problem of linear least-squares
regression: find x ∈ Rd for which Ax is as close as
possible to b ∈ Rn, with A ∈ Rn×d and n > d. This is
the “tall and skinny” case, whereA has more rows than
columns (Seal, 1967). Let LLS denote the function
that performs this mapping:

y = LLS(A, b) ≡ argmin
x
‖Ax− b‖22 (1)

Since there are more equations than variables, it is
likely that there is no solution with objective value
zero and hence we settle for one which is closest to b
within the span of the matrix A. There is an analytic
solution

y = A†b = (ATA)
−1
ATb = LS(ATA,ATb) (2)

where A† is the Moore-Penrose pseudo-inverse of A
(Moore, 1920; Penrose, 1956) and LS : (M, b) 7→M−1b
is a linear system solver. Note that it is generally faster
to implement LLS using a special-purpose iterative lin-
ear least-squares solver. We will treat LS and LLS as
black boxes, ignoring their implementation details.

1.2 Sketched Linear Least Squares
Regression

Oblivious subspace embeddings (OSE) generalize clas-
sical embedding results from vectors to subspaces.
They are now widely used to speed up the regression
problem, at the expense of accuracy (for a survey, see
Woodruff, 2014). An OSE is a distribution on matri-
ces S ∈ Rm×n with m � n such that for any given
d-dimensional subspace U , with large probability S
preserves the norm of every vector in U . More for-
mally, we require that with probability at least 1− δ:

‖Sx‖ = (1± ε)‖x‖ ∀x ∈ U, (3)

where for a vector z, ‖z‖ denotes the 2-norm
(
∑

i z
2
i )1/2. We can solve a linear system by sketch-

ing to approximately preserve the linear span of the
columns in A, which span a d-dimensional subspace
of Rn. By this, we mean the following application of
OSEs to least squares regression: we use a matrix S
as follows:

yS = LLSS(A, b) ≡ LLS(SA, Sb) = LS(MS ,mS) (4)

where MS ≡ (SA)TSA and mS ≡ (SA)TSb. Note we
have replaced the original n×d problem with an m×d
one, which serves as an approximation to the original
problem. Since we will choose m such that d ≤ m� n,
this can significantly improve the running time. In
particular for the case where S is the Subsampled

Randomized Hadamard transform (SRHT) (Woodruff,
2014), we can compute SA in O(nd log n) time and the
overall running time is O(nd log n+dω/ε2), where ω is
the exponent of matrix multiplication. One can also
use CountSketch or a Gaussian families of matrices,
see, e.g., Woodruff (2014) for a survey.

1.3 Algorithmic Differentiation

Algorithmic differentiation (AD) is a process by
which a numerical calculation specified in a computer
programming language can be mechanically trans-
formed so as to calculate derivatives (in the differ-
ential calculus sense) of the function originally calcu-
lated (Wengert, 1964; Speelpenning, 1980; Rall, 1981;
Griewank and Walther, 2008). We consider the two
fundamental AD transformations: forward accumu-
lation and reverse accumulation. In building deep
learning frameworks, it is necessary for each opera-
tion (meaning operations like multiplication and ad-
dition, and also array operations regarded as primi-
tives like convolution or matrix product) to have asso-
ciated derivative propagation functions (a compilation
of these for many standard matrix functions can be
found in Giles, 2008). These come in two varieties:
those that map a perturbation of the inputs to a basis
function to a perturbation of its outputs, as needed for
a forward AD transform; and those that map a gradi-
ent with respect to the outputs of a basis function to
a gradient with respect to its inputs, as needed for a
reverse AD transform (Naumann, 2012). We consider
the least squares regression function which is compu-
tationally expensive, and is instead approximated us-
ing sketching methods (see, e.g., (Woodruff, 2014) for
a survey). We study the propagation of derivatives
through such computations, with attention to both
computational burden and error.

Since derivative-taking and approximation do not
commute (Sirkes and Tziperman, 1997), the straight-
forward strategy of taking the exact derivative of the
sketched computation may yield numerically poor re-
sults. Moreover, in practice, the software systems to
which this work is most immediately relevant to in-
volve computing stochastic gradients via reverse AD
using small subsets of a large dataset. Thus, intro-
ducing zero-mean error into the gradient calculation
is usually not a serious concern, whereas introducing
non-zero-mean (i.e., biased) error might derail the op-
timization.

We therefore search for methods to approximately
propagate gradients through these burdensome com-
putations which are both computationally efficient and
unbiased. We establish strong bounds on the variance
of the error, and also examine the expectation of the
error with the intent of finding sufficient conditions for



Hang Liaoa, Barak A. Pearlmutter∗, Vamsi K. Potluru†, David P. Woodruffa

the expectation of the error in gradient propagation to
be zero.

1.4 Our Contributions

We revisit the error bound of the solution of sketched
LLS and analyze the forward accumulation and reverse
accumulation of least squares linear regression when
combined with sketching and in particular we:

• prove a novel bound on the operator
norm of X = (SA)†SB and show that
‖X‖2 = ‖(SA)†SB‖2 ≤ ‖A†B‖2 +
ε
√

(1 + d/k)(‖B‖22 + ‖B‖2F /k))/σmin(A), where

S has Õ(k/ε2)1 rows, Σ is the matrix in A’s sin-
gular value decomposition UΣV T and σmin(A)
is the minimum singular value of A. This ex-
tends the previously well-known result for vectors
(Sarlos, 2006; Drineas et al., 2011).

• propose two ways of combining sketching with re-
gression problems: (a) “Sketch + Differentiate”:
sketch the regression problem, as is usually done
in the literature, and apply standard AD transfor-
mations for the forward mode and reverse mode.
(b) “Differentiate + Sketch”: obtain standard AD
transformations on the original regression prob-
lem and only sketch the computationally inten-
sive terms such as ATA. Empirically, the latter
approach provides a better approximation of the
unsketched calculation.

2 Main Results

One of the terms that shows up in the analysis of AD
is the operator norm of A†B.

We start with the following definition.

Definition 1. An (ε, δ, r, l)-oblivious subspace embed-
ding is a distribution D over Rm×n for which

ES∼D‖UTSTSU − I‖l < εlδ

where ∀U ∈ Rn×r, UTU = I.

We need the following lemma.

Lemma 2. Let A be a full column rank matrix of
size n × d and similarly for B, where we assume
log(n) = do(1). Let S be an SRHT with m = Õ((d +
log(1/δ))/ε2) rows. For any matrix B of size n× d we
have

‖X‖2 = ‖(SA)†SB‖2 ≤ ‖A†B‖2 +
ε
√

(1 + d/k)(‖B‖22 + ‖B‖2F /k))/σmin(A), with prob-
ability 1− 1/poly(d).

1For a function f , we use the notation Õ(f) to denote
f · polylog(f).

Proof. Letting A = UΣV T be its singular value
decomposition, where U and V have orthonormal
columns and Σ is the non-negative diagonal matrix
of singular values, we can expand X as follows:

(SA)†SB = (ATSTSA)−1ATSTSB

= V Σ−1(UTSTSU)−1UTSTSB

= V Σ−1(Id − T )−1UTSTSB

= V Σ−1(

∞∑
k=0

T k)UTSTSB (5)

where T = Id − UTSTSU and we have that ‖T‖2 < 1
for ε < 1. Hence, the infinite von Neumann series
converges to (Id − T )−1.

We also need the following result concerning approx-
imate matrix product (AMM) with respect to the
spectral norm (Cohen et al., 2016):

Theorem 3. (Spectral Norm Approximate Matrix
Product) For any (ε, δ, 2k)-OSE, it satisfies (k, ε, δ)-
AMM, meaning the following condition holds:

‖ATSTSB −ATB‖2

≤ ε
√

(‖A‖22 + ‖A‖2F /k)(‖B‖22 + ‖B‖2F /k) (6)

where k is the maximum stable rank of the matrices
A,B with probability 1− δ.

Continuing our analysis,

‖V Σ−1T iUTSTSB‖2 ≤ εi‖Σ−1‖2‖UTSTSB‖2
∞∑
i=0

‖V Σ−1T iUTSTSB‖ ≤ 1

1− ε
‖Σ−1‖2‖UTSTSB‖2

≤ (1 + 2ε)‖Σ−1‖2‖UTSTSB‖2. (7)

Here we use the fact (see, e.g., Woodruff, 2014) that
with probability 1−exp(−d), the singular values of SU
are in (1 ± ε) for m = O(d/ε2). Applying Theorem 3
and upper bounding the stable rank by the rank,

‖UTSTSB − UTB‖2

≤ ε
√

(‖U‖22 + ‖U‖2F /k)(‖B‖22 + ‖B‖2F /k)

≤ ε
√

(1 + d/k)(‖B‖22 + ‖B‖2F /k) (8)

where we used that the spectral norm of a matrix
does not change when a rotation matrix such as U
is applied. Since we only utilized subspace embedding
results as a black box box, our result is valid for sub-
Gaussian maps, SRHT, or sparse subspace embeddings
with a suitable choice on the number of rows of the
sketching matrix S. We refer the reader to Woodruff



Automatic Differentiation of Sketched Regression

(2014) for the exact bounds; we note that in each case
the number of rows of S is poly(d/ε) and the differ-
ent sketching matrices have different properties; the
precise bound of the SRHT in the lemma statement
follows.

We use the result above to bound the following term
where y = argminx‖Ax−b‖ and yS = argminx‖SAx−
Sb‖. We have that with probability 1− 1/poly(d),

‖M−1ATBy −M−1S ATSTSBys‖2
= ‖M−1ATBy −M−1S ATSTSB(yS − y)

−M−1S ATSTSBy‖2
≤ ‖M−1S ATSTSB(yS − y)‖2

+ ‖M−1ATBy −M−1S ATSTSBy‖2
≤ ‖M−1S ATSTSB‖2‖yS − y‖2

+O(ε) min
x
‖Ax−By‖/σmin(A)

≤ O(ε)(‖X‖2‖Ay − b‖2/σmin(A)

+ min
x
‖Ax−By‖2/σmin(A)) (9)

where X = argminX‖SAX − SB‖F and we used the
result of Sarlos (2006) for individual vectors that ‖ys−
y‖ ≤ O(ε)‖Ay − b‖2‖A†‖2 with ‖A†‖2 = 1/σmin(A)
with probability 1−1/poly(d), applying it to both the
first and second terms corresponding to the two least
squares problems.

3 Automatic Differentiation (AD)

Automatic differentiation is a process by which a nu-
merical calculation specified in a computer program-
ming language can be mechanically transformed so
as to calculate derivatives (in the differential calculus
sense) of the function originally calculated (Wengert,
1964; Speelpenning, 1980; Rall, 1981; Griewank and
Walther, 2008). If f : (x ∈ Rn) 7→ (y ∈ Rm) and
Jf(x) ∈ Rm×n is the Jacobian of f at x (the matrix of
partial derivatives ∂yi/∂xj), then these are

dy = Jf(x)dx ∇xE = Jf(x)
T∇yE (10)

respectively. Note that E is the objective function of
the downstream application, for example, the logistic
loss function for a classification task. When we gener-
alize to inputs and outputs that are not just vectors
of real numbers (for instance, the input to a linear
system solver would have shape (Rn×n,Rn), that is, a
pair containing an n × n array and an n-dimensional
vector), by analogy we use J for operators involving
the generalized Jacobian:

dy = J f(x)(dx) ∇xE = J T f(x)(∇yE) (11)

Note that, like multiplication by the Jacobian, these
derivative propagations are by definition linear, since
they are defined as the local linear approximation to
f at x, and its adjoint. This implies a relationship
between J and J T, namely, for any dx and ∇yE,

〈J T f(x)(∇yE),dx〉 = 〈∇yE,J f(x)(dx)〉 (12)

where 〈·, ·〉 is the appropriately generalized dot prod-
uct.

3.1 Notation

We use ẋ = dx for an infinitesimal perturbation of x
(technically ẋ ∈ Txα is an element of the tangent space
of α at x ∈ α) and x̄ = ∇xE for a sensitivity with re-
spect to x (technically x̄ ∈ T ∗xα is an element of the
co-tangent space of α at x). For uniformity, we adopt
this standard notation used in the AD community. We
use a subscript S for sketched computations and values
thereby produced: yS = fS(x). We use ẏ = J f(x)(ẋ)
to denote the function that propagates forward deriva-
tives through f at x, and x̄ = J T f(x)(ȳ) for the func-
tion that propagates reverse derivatives through f at
x. When there are multiple sketched computations
involving different sketching matrices drawn indepen-
dently these are distinguished with S, S′, S′′, etc. We
write u′ = (c± ε)u for (c− ε)u ≤ u′ ≤ (c+ ε)u.

3.2 AD for regression

Consider solving a linear system of equations Mz = m.
We write z = LS(M,m) to clearly denote the in-
put (M and m) and output (z) of the process, and
to give the process itself a name (LS). For the for-
ward accumulation mode AD transform of this pro-
cess we write (z, ż) = J LS(M,m)(Ṁ, ṁ) where the
mapping from the perturbation of the inputs to the
perturbations of the outputs is ż = LS(M, ṁ − Ṁz).
In the case of linear regression, we have M = ATA
and m = ATb. The forward accumulation is given
by: (Ṁ, ṁ) = (ȦTA+ATȦ, ȦTb+ATḃ). The reverse
AD transform for a linear system solver is (M̄, m̄) =
J T LS(M,m)(z̄) = (−m̄zT,LS(MT, z̄)). Note that
this involves solving a transposed system of equations.

Similarly, the transform of matrix multiplication Z =
XY = (×)(X,Y ) is (X̄, Ȳ ) = J T(×)(X,Y )(Z̄) =
(Z̄Y T, XTZ̄) and the transform of Z = XT = (·T)(X)
is trivial: X̄ = J T(·T)(X)(Z̄) = Z̄T.

Lemma 4. If S is a sketching matrix of size m × n
where m = O(d/ε2) and n ≤ poly(d), then with proba-
bility 1 − 1/poly(d), we have ‖AM−1 − AM−1S ‖F ≤
ε‖Σ−1‖F , ‖M−1 + M−1S ‖2 ≤ (2 + ε)‖Σ−1‖22 and
‖M−1−M−1S ‖2 ≤ ε‖Σ−1‖2‖Σ−1‖F where the singular
values of SU are in the range [1− ε, 1 + ε].



Hang Liaoa, Barak A. Pearlmutter∗, Vamsi K. Potluru†, David P. Woodruffa

Proof. Consider the SVD of the matrix A.
We have M = ATA = V ΣUTUΣV T =
V Σ2V T and M−1 = V Σ−2V T. Additionally,
AM−1 = UΣV TV Σ−2V T = UΣ−1V T yielding
‖AM−1‖2 = ‖Σ−1‖2. So, we can simplify the
expression AM−1S = UΣV T(V ΣUTSTSUΣV T)−1

and obtain UΣV TV Σ−1(UTSTSU)−1Σ−1V T =
U(UTSTSU)−1Σ−1V T and bound it ‖AM−1S ‖2 =
(1± ε)‖Σ−1‖2 with probability at least 1− 1/poly(d).
This enables us to prove the required bounds:

‖M−1 −M−1S ‖F = ‖V Σ−1(I − (UTSTSU)−1)Σ−1V T‖
≤ ‖Σ−1‖2‖I − (UTSTSU)−1)‖2‖Σ−1‖
≤ ε‖Σ−1‖2‖Σ−1‖F (13)

‖M−1 +M−1S ‖2 = ‖V Σ−1(I + (UTSTSU)−1)Σ−1V T‖
≤ ‖Σ−1‖2‖I + (UTSTSU)−1)‖2‖Σ−1‖2
≤ (2 + ε)‖Σ−1‖22

We thus have:

‖AM−1 −AM−1S ‖F = ‖U(I − (UTSTSU)−1)Σ−1V T‖
= ‖(I − (UTSTSU)−1)‖2‖Σ−1V T‖F
≤ ε‖Σ−1‖F

where we used (ABC)−1 = C−1B−1A−1.

4 Forward Mode AD

We have ATAy = ATb for the least squares linear re-
gression problem. Expanding out the terms by per-
turbing the input and dropping the second order terms
we obtain ATAẏ = ȦTb+ATḃ− (ȦTA+ATȦ)y. (AD
transforms for a few important functions can be found
in the Supplementary Material.) We consider the fol-
lowing two ways to obtain efficient versions of the for-
ward mode by employing sketching:

4.1 Sketch and Differentiate

Let us denote the solution of the sketched linear re-
gression problem by ys. So, we have ATSTSAẏS =
ȦTSTSb+ATSTSḃ− (ȦTSTSA+ATSTSȦ)yS where
yS = LS(ATSTSA,ATSTSb).

Lemma 5. Given matrix S satisfying the (ε, δ, d, l)-
OSE moment property for some l ≥ 2, we can bound
‖ẏ − ẏS‖2 with probability 1− δ as follows:

Proof.

‖ẏ − ẏS‖2 = ‖M−1(ȦTb+ATḃ− (ȦTA+ATȦ)y)

−M−1S (ȦTSTSb+ATSTSḃ− (ȦTSTSA

+ATSTSȦ)yS)‖2
≤ ‖M−1ȦTb−M−1S ȦTSTSb‖2
+ ‖M−1ATḃ−M−1S ATSTSḃ‖2
+ ‖M−1(ȦTA+ATȦ)y

−M−1S (ȦTSTSA+ATSTSȦ)yS‖2 (14)

By the triangle inequality, ‖AB−CD‖ ≤ ‖A−C‖‖B+
D‖+‖A+C‖‖B−D‖ for arbitrary conforming matri-
ces, which we will use in the following equations. Let
us bound each of the differences between a term and
its sketched version. The first difference term can be
written as

‖M−1ȦTb−M−1S ȦTSTSb‖
≤ ‖M−1 −M−1S ‖‖Ȧ

Tb+ ȦTSTSb‖
+ ‖M−1 +M−1S ‖2‖Ȧ

Tb− ȦTSTSb‖
≤ O(ε)‖Σ−1‖2‖Σ−1‖F ‖ȦTb+ ȦTSTSb‖
+ (2 + ε)‖Σ−1‖22‖ȦTb− ȦTSTSb‖

where we used Lemma 4 and that the singular values
of SU are in 1 ± ε. Following up with the second
difference term

‖M−1ATḃ−M−1S ATSTSḃ‖ ≤ O(ε) min
x
‖Ax− ḃ‖2‖A†‖2

(15)

where we used the result of Price et al. (2017). The
third difference term can be handled as follows:

‖M−1ȦTAy −M−1S ȦTSTSAyS‖2
≤ ‖M−1 −M−1S ‖2‖Ȧ

TAy + ȦTSTSAyS‖2 (16)

+ ‖M−1 +M−1S ‖2‖Ȧ
TAy − ȦTSTSAyS‖2

≤ ε‖Σ−1‖2‖Σ−1‖F ‖ȦTAy + ȦTSTSAyS‖
+ (2 + ε)‖Σ−1‖22‖ȦTAy − ȦTSTSAyS‖

≤ ε‖Σ−1‖2‖Σ−1‖F ‖ȦTAy + ȦTSTSAyS‖
+ (2 + ε)‖Σ−1‖22(‖ȦTA‖‖y − yS‖

+ ‖ȦTA− ȦTSTSA‖2‖yS‖2)

where we used Lemma 4 and we can apply AMM (Co-
hen et al., 2016) to bound the spectral norm of the
matrix product ȦTA along with the solution bound
for ‖y−yS‖ (Price et al., 2017). Note that the bounds
go to zero when S is the identity matrix. The last
difference term can be bounded from the result in Sec-



Automatic Differentiation of Sketched Regression

tion 2 as follows:

‖M−1ATȦy −M−1S ATSTSȦyS‖

≤ O(ε)
‖X‖2
σmin(A)

‖Ay − b‖2 + min
x

‖Ax− Ȧy‖2
σmin(A))

‖X‖2 . (1 + 2ε)‖Σ−1‖2

(‖Ȧ‖2 + ε

√
(1 + d/k)(‖Ȧ‖22 + ‖Ȧ‖2F /k))

Combining all of these results for the four terms gives
us the required approximation bound.

4.2 Differentiate and Sketch

Let us denote the solution of the least squares problem
by yD, where we sketch only the computationally ex-
pensive term M as follows: yD = LS(ATSTSA,ATb).
A similar consideration of only sketching the matrix A
was first considered in the setting of constrained least-
squares Pilanci and Wainwright (2016). For ease of
exposition, denote G = ȦTA+ATȦ.

Lemma 6. For any matrix S satisfying the (ε, δ, d, l)-
OSE moment property for some l ≥ 2, we have with
probability 1− δ

‖ẏ − ẏD‖ ≤ O(ε)(‖Σ−1‖22‖ȦTb

+ATḃ‖+ ‖Σ−1‖22‖Gy‖+ ‖M−1S G‖‖ATb‖)

Proof. We only sketch the computationally intensive
part corresponding to ATA. Let ATSTSAyD = ATb
and ATSTSAẏD = ȦTb+ATḃ− (ȦTA+ATȦ)yD. We
bound ‖ẏ − ẏD‖ using the results in Lemma 4:

‖ẏ − ẏD‖ = ‖(M−1 −M−1S )(ȦTb+ATḃ)

+M−1S (ȦTA+ATȦ)yD

−M−1(ȦTA+ATȦ)y)‖
≤ ε‖Σ−1‖22‖ȦTb+ATḃ‖

+ ‖(M−1 −M−1S )Gy‖
+ ‖M−1S G(y − yD)‖

≤ ε‖Σ−1‖22‖ȦTb+ATḃ‖
+ ε‖Σ−1‖22‖Gy‖+ ‖M−1S G(y − yD)‖

≤ ε‖Σ−1‖22‖ȦTb+ATḃ‖
+ ε‖Σ−1‖22‖Gy‖+ ε‖M−1S G‖‖ATb‖

where the last term ‖y − yD‖ can be bounded as fol-
lows: ‖y− yD‖ = ‖((ATA)−1 − (ATSTSA)−1)ATb‖ ≤
‖((ATA)−1 − (ATSTSA)−1)‖2‖ATb‖. Since S is a
subspace embedding for the column span of A, (1 −
ε)ATA ≤ ATSTSA ≤ (1+ε)ATA in the PSD ordering,
which implies (1/(1 + ε))(ATA)−1 ≤ (ATSTSA)−1 ≤
(1/(1 − ε))(ATA)−1, which implies that ‖(ATA)−1 −
(ATSTSA)−1‖2 = O(ε)‖Σ−2‖2.

5 Reverse Mode AD

The sensitivities for the linear least squares prob-
lem are derived in the Supplementary Material, and
in particular (Ā, b̄) = (−A†TȳyT − AyȳTM−1 +
bȳTM−1, A†T ȳ). Similar to the forward mode, we
consider the following two approaches of “Sketch
and Differentiate” and “Differentiate and Sketch”.
Applying this to the sketched regression problem,
MS = (SA)TSA, mS = (SA)TSb and yS =
LS(MS ,ms). In particular, we have ĀS , b̄S =
J T(fS)(S,A, b)(yS , ȳ). Whence, we have ĀS =

−STA†TS ȳyS
T−STSAyS ȳ

TM−1S +STSbȳTM−1S . And

also, b̄S = STSAm̄ = STSAMS
−Tȳ = STA†TS ȳ. Since

it is hard to model the relationship between ȳ and ȳS ,
we make an inaccurate but reasonable assumption that
ȳ = ȳS .

5.1 “Sketch and Differentiate”

Lemma 7. The reverse mode approximation error for
the term b̄ when we approximate it by the sketching ma-
trix S can be bounded with probability 1− δ as follows:
‖b̄− b̄S‖2 ≤ ‖Σ−1‖2‖ȳ‖2(ε+ (1 + ε)‖I − STS‖2).

Proof. Use Lemma 4 and use sub-mulitplicativity.
Hence, the error can be large (‖I − STS‖2).

Lemma 8. The reverse mode approximation error for
the term Ā when we approximate it by the sketching
matrix S can be bounded with probability 1− δ.

Proof. The approximation error can be decomposed
into three parts ‖Ā− ĀS‖ ≤ P1 + P2 + P3:

P1 = ‖bȳTM−1 − STSbȳS
TM−1S )‖F

≤ ‖I − STS‖‖bȳTM−1S ‖+ ‖bȳT(M−1 −M−1S ‖
P2 ≤ ‖AM−1ȳyT −AM−1S ȳyT‖F

+ ‖AM−1S ȳyT − STSAM−1S ȳyS
T‖F

≤ ε‖Σ−1‖F ‖ȳ‖‖y‖
+ ‖AM−1S ȳyT − STSAM−1S ȳyS

T‖F

We can similarly do the above for P3. Also, note that
the error for the terms P1, P2, P3 can be large, similar
to the previous lemma.

5.2 “Differentiate and Sketch”

Lemma 9. The reverse mode approximation error for
the term b̄ when we sketch only the computationally
expensive terms by S, with probability at least 1 − δ
satisfies ‖b̄− b̄S‖2 ≤ ε‖Σ−1‖2‖ȳ‖2.

Proof. We use the sketching properties and sub-
multiplicativity, and the result follows.



Hang Liaoa, Barak A. Pearlmutter∗, Vamsi K. Potluru†, David P. Woodruffa

Lemma 10. The reverse mode approximation error
for the term Ā, when we sketch only the computation-
ally expensive terms by S, is, with probability at least
1− δ, bounded by O(ε).

Proof. We give the proof in the Supplementary Mate-
rial, and also state the exact form of the approxima-
tion error there. We utilize the result from Price et al.
(2017) to bound the least squares solution error.

6 Related work

Sketching for speeding up distributed communication
of gradients has been recently considered (Ivkin et al.,
2019, and references therein). In particular, dis-
tributed stochastic gradient descent (SGD) methods
have been sped up by utilizing CountSketch projec-
tions. In our work, we explicitly open up the gradient
computation step to identify parts that can be sped up
by sketching methods. This marks a significant depar-
ture from the recent sketching for gradient literature
which does not consider the structure of the layer when
computing the gradient.

7 Experiments

We consider both synthetic and real-world datasets to
highlight our regression layer and sketching for gra-
dients to speed up training times. Synthetic experi-
ments have been deferred to the Supplementary Mate-
rial. The real-world datasets that we consider are the
following:

MNIST: 60, 000 handwritten digits of shape 28× 28
for training and 10, 000 for testing.

CIFAR10: 60, 000 images in 10 equal classes of which
10, 000 are for testing. The image classes include
airplanes, horses, and cats.

Experimental results from the two approaches, namely,
“sketch+differentiate” and “differentiate+sketch”, are
shown in Figures 1 and 2.

7.1 Autoencoder

Let us consider an autoencoder for showcasing our new
regression layer. We consider the standard encode de-
coder framework with the encoder consisting of a linear
layer mapping to 128 dimensions followed by a ReLu
layer. The decoder is built with a linear layer mapping
from 64 to 128 dimensions followed by a ReLU and a
second linear layer mapping from 128 dimensions to
the input dimension, followed by a tanh layer. In our
experiments, we replace the only linear layer of the

Table 1: Tess loss on the MNIST and CIFAR10
datasets after convergence of the sketching algorithms
using random Gaussian (RG) and CountSketch matri-
ces (CS) with the two approaches proposed, namely
diffsketch or ds, and sketchdiff or sd.

Sketching
MNIST CIFAR10

64 128 256 64 128 256

RG
ds 0.16 0.08 0.08 0.21 0.09 0.08
sd 0.11 0.07 0.08 0.11 0.08 0.08

CS
ds 0.15 0.10 0.09 0.14 0.09 0.09
sd 0.10 0.09 0.08 0.09 0.08 0.08

encoder by the regression layer or, in other words, the
linear least squares regression module that has been
considered in this paper.

7.2 Results

Overall, the regression layer tends to have a higher loss
and running time compared with the linear layer. Yet,
after applying sketching with Gaussian or CountS-
ketch matrices, the running time is now close to the
running time of a linear layer and not at the cost of
a higher loss. Instead, we can see that with higher
rank features (128, 256), our sketched regression model
achieves a lower loss and converges faster than the nor-
mal regression layer. The performance of the regres-
sion layer with CountSketch can be further improved
with sparse datasets. We run our models on both a
GPU and a CPU and find the performance of sketch-
ing algorithms to perform differently between the two.
This is likely due to the fact that our sketching oper-
ations are not optimized for GPU settings, as seen in
Figure 2.

8 Discussion and Future Work

We have shown that the advantages of sketched lin-
ear regression need not be sacrificed in the context of
AD: in fact, sketching can be applied appropriately to
the derivative computations in a fashion that preserves
both the favorable complexity properties of AD and
the favorable accuracy properties of sketching. One
might speculate that this basic idea may hold for other
sketched computations.

We provide two ways of speeding up a NN linear
layer via sketching methods, and provide approxima-
tion bounds for the induced error. Experimental re-
sults are consistent with the theory, but do raise some
tantalizing questions. For the example considered in



Automatic Differentiation of Sketched Regression

Figure 1: Training loss in linear and regression layers on MNIST and CIFAR10 datasets with 64, 128 and 256 rank
features run on a NVIDIA GTX980 GPU. Notice that we hardly get any speedup over the plain regression layer
and this is probably due to the fact that we have not taken advantage of GPU capabilities for implementing the
sketching operations. Also, surprisingly the sketchdiff seems to result in better performance in terms of training
loss than the diffsketch approach.

Figure 2: Training loss in linear and regression layers on CIFAR10 dataset with 64, 128 and 256 rank features on
multicore settings (CPU). We note that sketching methods provide a significant speedup over the plain regression
Layer. In the CPU setting, we only consider the diffsketch version though it should also apply to sketchdiff.

the Supplementary Material, diffsketch has a lower er-
ror compared to sketchdiff. However, with actual ex-
periments with an autoencoder, the results appear to
be reversed. We sketched only the linear layer in the
encoder layer because the dimensions were favorable
to our setting.

On the theoretical end, we have exhibited a useful
bound on the spectral norm of X = (SA)†SB which
appears in the analysis of AD of sketched linear least
squares regression. Also, two ways of approaching
sketching are shown in the context of AD: “sketch and
differentiate” vs “differentiate and sketch”. Empiri-

cally, the former seems to have favorable approxima-
tion results which could help with selecting the ap-
propriate approach when incorporating sketching tools
into deep learning frameworks. Extensions of these
results to other problems such as low-rank matrix ap-
proximation and regression with other norms would be
of interest.

Acknowledgements

Vamsi P. is currently at JP Morgan AI Research.
This paper was prepared for information purposes by
the AI Research Group of JPMorgan Chase & Co



Hang Liaoa, Barak A. Pearlmutter∗, Vamsi K. Potluru†, David P. Woodruffa

and its affiliates (“J.P. Morgan”), and is not a prod-
uct of the Research Department of J.P. Morgan. D.
Woodruff would like to thank partial support from the
Office of Naval Research (ONR) grant N00014-18-1-
2562.

References

Hilary L. Seal. The historical development of the
Gauss linear model. Biometrika, 54(1/2):1–24, 1967.
doi: 10.1093/biomet/54.1-2.1.

Eliakim Hastings Moore. On the reciprocal of the
general algebraic matrix. Bulletin of the Ameri-
can Mathematical Society, 26(9):394–5, 1920. doi:
10.1090/S0002-9904-1920-03322-7.

Roger Penrose. On best approximate solution of lin-
ear matrix equations. Proceedings of the Cam-
bridge Philosophical Society, 52:17–9, 1956. doi:
10.1017/S0305004100030929.

David P Woodruff. Sketching as a tool for numerical
linear algebra. Foundations and Trends R© in Theo-
retical Computer Science, 10(1–2):1–157, 2014.

R. Wengert. A simple automatic derivative evaluation
program. Communications of the ACM, 7(8):463–
464, 1964.

B. Speelpenning. Compiling Fast Partial Deriva-
tives of Functions Given by Algorithms. PhD the-
sis, Department of Computer Science, University of
Illinois at Urbana-Champaign, Urbana-Champaign,
IL, January 1980.

Louis B. Rall. Automatic Differentiation: Techniques
and Applications, volume 120 of Lecture Notes in
Computer Science. Springer, Berlin, 1981. ISBN
0–540–10861–0. doi: 10.1007/3-540-10861-0.

Andreas Griewank and Andrea Walther. Evaluating
Derivatives: Principles and Techniques of Algorith-
mic Differentiation. Number 105 in Other Titles
in Applied Mathematics. SIAM, Philadelphia, PA,
2nd edition, 2008. ISBN 978–0–898716–59–7. URL
http://bookstore.siam.org/ot105/.

Mike B. Giles. Collected matrix derivative results for
forward and reverse mode algorithmic differentia-
tion. In Christian H. Bischof, H. Martin Bücker,
Paul D. Hovland, Uwe Naumann, and J. Utke, ed-
itors, Advances in Automatic Differentiation, vol-
ume 64 of Lecture Notes in Computational Sci-
ence and Engineering, pages 35–44. Springer, Berlin,
2008. ISBN 978-3-540-68935-5. doi: 10.1007/
978-3-540-68942-3 4.

Uwe Naumann. The Art of Differentiating Computer
Programs: An Introduction to Algorithmic Differen-
tiation. Number 24 in Software, Environments, and

Tools. SIAM, Philadelphia, PA, 2012. ISBN 978–1–
611972–06–1. URL http://bookstore.siam.org/se24.

Z. Sirkes and E. Tziperman. Finite difference of adjoint
or adjoint of finite difference? Monthly Weather
Review, 125(12):3373–8, 1997. doi: 10.1175/
1520-0493(1997)125〈3373:FDOAOA〉2.0.CO;2.

Tamas Sarlos. Improved approximation algorithms for
large matrices via random projections. In 2006 47th
Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS’06), pages 143–152. IEEE,
2006.

Petros Drineas, Michael W Mahoney, Shan Muthukr-
ishnan, and Tamás Sarlós. Faster least squares ap-
proximation. Numerische mathematik, 117(2):219–
249, 2011.

Michael B Cohen, Jelani Nelson, and David P
Woodruff. Optimal approximate matrix product
in terms of stable rank. In LIPIcs-Leibniz In-
ternational Proceedings in Informatics, volume 55.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2016.

Eric Price, Zhao Song, and David P. Woodruff. Fast
regression with an l∞ guarantee. In 44th Inter-
national Colloquium on Automata, Languages, and
Programming, ICALP 2017, July 10-14, 2017, War-
saw, Poland, pages 59:1–59:14, 2017. doi: 10.4230/
LIPIcs.ICALP.2017.59.

Mert Pilanci and Martin J Wainwright. Iterative hes-
sian sketch: Fast and accurate solution approxima-
tion for constrained least-squares. The Journal of
Machine Learning Research, 17(1):1842–1879, 2016.

Nikita Ivkin, Daniel Rothchild, Enayat Ullah,
Vladimir Braverman, Ion Stoica, and Raman
Arora. Communication-efficient distributed sgd
with sketching. arXiv preprint arXiv:1903.04488,
2019.

http://bookstore.siam.org/ot105/
http://bookstore.siam.org/se24

	Introduction
	Linear Regression
	Sketched Linear Least Squares Regression
	Algorithmic Differentiation
	Our Contributions

	Main Results
	Automatic Differentiation (AD)
	Notation
	AD for regression

	Forward Mode AD
	Sketch and Differentiate
	Differentiate and Sketch

	Reverse Mode AD
	``Sketch and Differentiate''
	``Differentiate and Sketch''

	Related work
	Experiments
	Autoencoder
	Results

	Discussion and Future Work

