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Abstract

With the wide-spread availability of complex relational data, semi-supervised node
classification in graphs has become a central machine learning problem. Graph
neural networks are a recent class of easy-to-train and accurate methods for this
problem that map the features in the neighborhood of a node to its label, but
they ignore label correlation during inference and their predictions are difficult to
interpret. On the other hand, collective classification is a traditional approach based
on interpretable graphical models that explicitly model label correlations. Here, we
introduce a model that combines the advantages of these two approaches, where
we compute the marginal probabilities in a conditional random field, similar to
collective classification, and the potentials in the random field are learned through
end-to-end training, akin to graph neural networks. In our model, potentials on
each node only depend on that node’s features, and edge potentials are learned
via a coupling matrix. This structure enables simple training with interpretable
parameters, scales to large networks, naturally incorporates training labels at
inference, and is often more accurate than related approaches. Our approach can
be viewed as either an interpretable message-passing graph neural network or a
collective classification method with higher capacity and modernized training.

1 Bridging Graph Neural Networks and Collective Classification

Graphs are a natural model for systems with interacting components, where the nodes represent
individual objects and the edges represent their interactions [1, 2]. For example, a social network
might be modeled as a graph where the nodes are users and the edges are friendships. Oftentimes, the
nodes have attributes, such as a user’s age, gender, or occupation in a social network, but attributes
are typically incomplete due to difficulties in data collection or privacy. Graph-based semi-supervised
learning, also called node classification, addresses this problem by predicting a missing attribute
(i.e., label y) on some nodes given other attributes (i.e., features x), and has been used in a variety of
applications, such as product category identification and protein function prediction [3, 4, 5, 6, 7].

Graph neural networks (GNNs) are a common method for semi-supervised learning on graphs [5, 8,
9, 10]. A GNN first summarizes the features and graph structure in the neighborhood of each node
into a vector representation. After, each node’s representation is used independently for classification.
Automatic differentiation enables end-to-end training, and there are simple sub-sampling schemes to
handle large graphs [6]. However, this approach implicitly assumes that node labels are conditionally
independent given all features, and standard GNNs do not (directly) use correlations between training
and testing labels during inference. Moreover, GNNs consist of transformation and aggregation
functions parametrized by neural networks and the learned models are difficult to interpret.

On the other hand, collective classification (CC) is a class of interpretable methods based on graphical
models that directly leverage label correlation for prediction [11, 12, 13, 14, 15, 16, 17]. The statistical
assumptions behind CC models are also arguably more appropriate than GNNs for graph data. For
instance, relation Markov networks (RMNs) [17] model the joint distribution of all node labels with a
conditional random field and predict an unknown label with its marginal probabilities. Leveraging
label correlation during inference then simply amounts to conditioning on the training labels. However,
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the interpretability and convenience come with a cost. Collective classification models are learned by
maximizing the joint likelihood, making end-to-end training extremely challenging. The difficulty in
learning model parameters, in turn, limits the capacity of the model itself.

The fact that GNNs and CC are two solutions to a same problem inspires a series of research questions.
Is there a GNN architecture that learns the joint label distribution? Can we improve the modeling
capacity and training of CC without hurting its interpretability? Finally, what type of approach would
bridge those two largely independently developed fields?

Here, we answer these questions in the affirmative by developing graph belief propagation networks
(GBPNs). Our main idea is to learn the joint label distribution by maximizing the marginal likelihood
of individual labels. Specifically, we model the node labels in a graph as a conditional random field,
where the coupling-potential on each edge is the same, but the self-potential on each node only
depend on its features. As such, our model is specified by a matrix for the coupling-potential that
describes the affinity for nodes with certain labels to be connected, and a multi-layer perceptron
(MLP) that maps a node’s features to its self-potential. To compute the marginal probabilities for each
node label, we use loopy belief propagation (BP). Putting everything together, we have a two-step
inference algorithm that can be trained end-to-end: 1© compute the self-potential on each node with
an MLP, and 2© estimate the marginal probabilities with a fixed number of BP iterations.

In one sense, GBPN is a message-passing GNN that projects node features to a dimension equal
to the number of classes upfront, and subsequently use the projected features for propagation and
aggregation. On the other hand, GBPN learns the joint distribution of node labels in a graph similar
to CC, and outputs the corresponding marginal probabilities for each node as a prediction. The
prediction accuracy is oftentimes higher than GNNs on benchmark datasets, and the learned coupling
matrix can be used to interpret the data and predictions. We also show this approach leads to
straightforward mini-batch training so that the methods can be used on large graphs.

One issue is whether the marginal probabilities estimated by BP are good approximations on graphs
with loops. Empirically, BP often converges on graphs with cycles with estimated marginals that are
close to the ground truth [18]. In our context, we find that BP converges in just a few iterations on
several real-world graph datasets. Another possible concern is whether learning a joint distribution
by maximizing the marginal likelihood produces good estimates. We show that on synthetic sampled
from Markov random fields (MRFs), this approach recovers the parameters used to generate the data.

1.1 Additional related work

Collective classification. Collective classification encompasses many machine learning algorithms
for relational data that use correlation in labels among connected entities in addition to features on the
entities [11, 12, 13]. For example, local conditional classifiers iteratively make predictions and update
node features based on these predictions [14, 15, 16, 19]. Closer to our methods are approaches
that use pairwise MRFs and belief propagation [17]. The major difference is that they estimate the
MRF coupling-potentials by maximizing the joint likelihood of all the nodes, and therefore require a
fully labeled graph for training (see Section 2.3). In contrast, our model is learned discriminatively
end-to-end on the training nodes by back-propagating through belief propagation steps.

MRFs with GNNs. A few approaches combine MRFs and graph neural networks [20, 21, 22]. They
add a conditional random field layer to model the joint distribution of the node labels and maximize
the joint probability of the observed labels during training. Variational methods or pseudolikelihood
approaches are used to optimize the joint likelihood. Our GBPN model avoid these difficulties by
optimizing for the marginal likelihood, and this leads to more accurate predictions.

Direct use of training labels. Besides MRFs, other GNN approaches have used training labels at
inference in graph-based learning. These include diffusions on training labels for data augmenta-
tion [23] and post-processing techniques [24, 25, 26]. Similar in spirit, smoothing techniques model
positive label correlations in neighboring nodes [27, 28]. Our approach is more statistical, as GBPN
just conditions on known labels.

Learning better belief propagation algorithms. Some recent research learns a belief propagation
algorithm to estimate the partition function in a graphical model [29, 30]. In comparison, we focus
on the node classification problem for real-world graphs.
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2 Node Classification as Statistical Inference in a Markov Random Field

Consider an attributed graph G(V,E,X,y) where V is a set n of nodes, E is a set of undirected
edges, X ∈ Rn×d is a matrix whose rows correspond to node features, and y ∈ {0, . . . , c − 1}n is
a vector of node labels in one of c possible classes. We partition the vertices into two disjoint sets
L ∪ U = V , where L is the training set (labeled) and U is the testing set (unlabeled). In the node
classification task, we assume access to all node features {xi}i∈V and the labels on the training nodes
{yi}i∈L, and the goal is to predict the testing labels {yi}i∈U . The basic idea of our approach is to
define a joint distribution over node features and labels p(X,y) and then cast the node classification
task as computing the marginal probability p(yi∣X,yL).

2.1 A Data Generation Process for Node Attributes

We treat the graph as deterministic but the node attributes randomly as follows: 1© Jointly sample the
node labels p(y); 2© Given the node labels y, sample the features from p(X ∣y). This generation
process defines a joint distribution p(X,y). Furthermore, we add the following assumptions.

• First, the joint distribution of node labels p(y) is a pairwise Markov random field,

p(y) = ϕ(y)
∑y′ ϕ(y′)

, ϕ(y) =∏i∈V hi(yi)∏(i,j)∈EHij(yi, yj), (1)

and the coupling-potential on every edge is the same and symmetric, i.e. Hij(yi, yj) =Hyi,yj =

Hyi,yj , where H ∈ Rc×c+ . This assumption implies each node is directly coupled only with its
neighbors, a condition known as the Markov propriety in probabilistic graph models [31].

• Second, The conditional distribution p(X ∣y) can be factorized as

p(X ∣y) =∏i∈V p(xi∣yi) =∏i∈V f(yi;xi), (2)

which means the features on each node is independently sampled given its label.

These two assumptions lead to simple and efficient inference algorithms, as we will show next.

2.2 Node Classification Models Derived through Probabilistic Inference

Following the generative model defined above, we derive the posterior probability as:

p(y∣X) =
p(X,y)
p(X) =

p(y)p(X ∣y)
∑y′ p(y′)p(X ∣y′)

≅∏i∈V f(yi;xi) hi(yi)∏(i,j)∈EHij(yi, yj) (3)

=∏i∈V g(yi;xi)∏(i,j)∈EHij(yi, yj), (4)

which is a conditional random field [32], where ≅ denotes “equality up to a normalization” [33]. We
directly parametrize this posterior distribution using a symmetric matrix H for the coupling-potential,
and a neural network function gθ to map from a node’s features to its self-potential. Similar modeling
assumptions have been considered in collective classification [17, 34], where the models are trained
to maximize the joint likelihood. In contrast, our model is trained on the marginal likelihood of
individual labels. Next, we introduce the inference algorithm for the marginal probability p(yi∣X).
The algorithm only use node features for label prediction, and (once trained) can be used to predict
labels in a unseen graph. Later, we consider the inference algorithm for p(yi∣X,yL), which gives
more accurate predictions in the transductive learning setting.

Inference. Exact inference for the marginal probabilities is intractable on large-scale graphs with
cycles [31]. Therefore, we resort to approximate inference using the loopy belief propagation (BP)
algorithm [18]. In particular, we estimate the marginal probabilities using a two-step algorithm.

1© Compute the self-potentials using a multi-layer perceptron (MLP) with parameters θ,

gθ(yi;xi) = Cat(yi∣softmax(MLPθ(xi))). (5)

2© Run T iterations of belief-propagation,

p
(t)
i (yi) ≅ p

(0)
i (yi)∏j∈N(i)m

(t)
ji (yi), m

(t)
ji (yi) ≅ ∑yj Hji(yj , yi)

p
(t−1)
j (yj)

m
(t−1)
ij (yj)

, (6)

where t = 1, . . . , T and N(i) are the neighbors of node i. The initial condition is given by,

p
(0)
i (yi) = g(yi;xi), m

(0)
ji (yj , yi) = 1/c. (7)
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In other words, we set the initial belief on each node to its self-potential and update it with messages
from the neighbors. The final belief pi(yi) = p

(T )
i (yi) is used to approximate p(yi∣X).

In practice, for numerical stability, we perform belief-propagation updates in the log-space.

log p
(t)
i (yi) ≅ log p

(0)
i (yi) + ∑

j∈N(i)
logm

(t)
ji (yi) , (8)

logm
(t)
ji (yi) ≅ LSEyj [logHji(yj , yi) + log p

(t−1)
j (yj) − logm

(t−1)
ij (yj)] , (9)

where LSE stands for the log-sum-exp function: LSEyj [f(yi, yj)] = log [∑yj exp (f(yi, yj))] .

Learning. We optimize the model by maximizing the log marginal-likelihood of the training labels,
θ∗,H∗ = arg maxθ,H ∑i∈L log p(yi∣X) ≈ arg maxθ,H ∑i∈L log pi(yi). (10)

The gradients with respective to the parameters are computed with auto-differentiation by backpropa-
gating through the BP iterations. Since the inference algorithm only uses node features, we can learn
the parameters in one graph with abundant labels, and predict for another graph where the labels are
difficult to obtain. As such, we denote this algorithm as the inductive variant of GBPN, or GBPN-I.

Direct use of training labels for inference. In the transductive learning setting, both the training
and testing nodes are from the same graph. Therefore, we can directly leverage the training labels
during inference. From the probabilistic inference perspective, we start with a joint distribution over
testing labels by conditioning on both the features and the training labels, i.e.,

p(yU ∣X,yL) ≅∏
i∈U

⎡
⎢
⎢
⎢
⎢
⎣

g(yi;xi) ∏
i∈U, j∈L, (i,j)∈E

Hij(yi, yj)

⎤
⎥
⎥
⎥
⎥
⎦

∏
i,j∈U, (i,j)∈E

Hij(yi, yj). (11)

This is nothing but another conditional random field defined on the induced subgraph G[U], where
the self-potentials are modified to incorporate the couplings between the training and testing nodes in
the original graph. Then, similar to the inductive algorithm, we estimate the marginal probabilities by
belief propagation. To better mimic how we predict the testing labels, during each training step, we
randomly select half of the training nodes to be conditioned on, and optimize the log-likelihood loss
on the other half. We denote this transductive variant of inference and training as GBPN.

2.3 Comparison with Other Node Classification Methods

Now that our method is fully specified, we comparing it with existing methods in terms of statistical
assumption, model parametrization, training/inference objective and optimization algorithm.

GNNs [35] independently predict the label on each node using node features in the neighborhood.
The implicit statistical assumption is that node labels are conditional independent given the features:

p(y∣X) =∏i∈V p(yi∣X) (12)
Therefore, GNNs ignore label correlation and directly parametrize p(yi∣X) to extract the most
information from features. In contrast, GBPN models p(y∣X) and uses label correlation for inference.

RMN [17] is a representative example for collective classification methods [11] that directly max-
imize the joint likelihood p(y∣X). Those models only work for the inductive setting, where they
are first trained on a fully labeled graph and then used to predict node labels in a different graph.
In comparison, our model can be trained on a partially labeled graph, and it is suitable for both the
inductive and transductive setting. Moreover, even on a graph that is fully labeled, methods like
RMN are historically difficult to train. This is because the gradient of the joint likelihood involves a
normalization factor and is therefore hard to compute. GBPN avoids this problem by differentiating
through the belief-propagation iterations with backpropagation.

Pseudolikelihood EM [34] was designed to learn the correlation structure in a partially labeled
graph by maximizing the evidence lower bound (ELBO) for the joint likelihood of the training labels
p(yL∣X). Maximizing the ELBO boils down to directly optimizing two marginal distributions: a
variational distribution qθ and a pseudolikelihood pφ used to approximate the posterior. Therefore, if
pφ and qθ are neural networks (as in the GMNN model [20]), then the entire model can be trained
with auto-differentiation. The learned pφ can leverage training labels during inference, akin to GBPN.
However, while GMNN models label correlation with neural networks, GBPN explicitly specifies the
coupling-potential and is thus more interpretable. Moreover, we compare GBPM with GMNN in
section 3.1 and find GBPN gives higher prediction accuracies on benchmark datasets.
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Table 1: Summary of node classification methods from the probabilistic inference perspective.

method assumption model parametrization training inference optimization

GBPN eq. (4) p(y∣X) p(yi∣X,yL) p(yi∣X,yL) auto-diff
GNN eq. (12) p(yi∣X) p(yi∣X) p(yi∣X) auto-diff
RMN eq. (4) p(y∣X) p(y∣X) p(yi∣X,yL) manual-diff

GMNN eq. (4) pφ(yi∣X,yN(i)), qθ(yi∣X) p(yL∣X) p(yi∣X,yL) EM (auto-diff)

2.4 Practical Considerations for Training GBPNs

i 90% red 
10% blue

99.998% red
  0.002% bluej

predicted
probabilities
red vs. blue

Figure 1: Predicted probabilities
for low- vs. high-degree nodes.

One modeling choice we have to make for GBPN is the loss
function for training. Although the (unweighted) negative log-
likelihood loss is often used for training GNNs, the same choice
for GBPN can lead to sub-optimal performance in practice, es-
pecially when the degree heterogeneity in a graph is large. The
reason is that, unlike GNNs, the predictive confidence of GBPN
on a node can grow exponentially with the node degree, as shown
in fig. 1. Therefore, the negative log-likelihood loss associated
with mis-classifying a node grows linearly with the node degree.
This creates a potential misalignment between the loss function
and the classification accuracy, as classification accuracy is not
weighted based on node degree. We will demonstrate this misalignment empirically in Section 3.3.

We employ a straightforward way to align the loss function to the accuracy measure, which is to
reweight the marginal likelihood in the loss function eq. (10) as log p′i(y) ≅ αi ⋅ log pi(y). Here, αi
reduces the influence of high-degree nodes. In practice, we find that αi = d(i)−1/2 gives consistently
better performance than αi = 1 (no reweighting), where d(i) is the degree of node i.

One limitation of GBPN is that it requires storing all the messages between neighbors during training,
which costsO(∣E∣) per BP step. In comparison, GCN [5] and GraphSAGE [6] costsO(∣V ∣) per layer,
and GAT [8] costs O(∣E∣) per layer due to edge attention weights. To reduce the computational cost
on large-scale network, we will introduce a mini-batch training algorithm for GBPN in Section 3.3.

3 Experiments

Now, we compare GBPN against GNNs empirically on several synthetic and real-world datasets, and
also interpret the learned GBPN models, as well as discuss new sub-sampling techniques for large
networks. The proposed models are summarized with pseudocode in appendix A.1 and implemented
in PyTorch Geometric [36]. The source code, data, and experiments are publicly available online at
https://github.com/000Justin000/GBPN.git. Statistics of all the datasets are in table 2 and
we describe them below.

Table 2: Summary of dataset statistics.
# nodes # edges # features # classes

Ising+ 2.6×103 1.0×104 2 2
Ising− 2.6×103 1.0×104 2 2
MRF+ 2.6×103 1.0×104 2 3
MRF− 2.6×103 1.0×104 2 3

Cora 2.7×103 5.3×103 1433 7
CiteSeer 3.3×103 4.6×103 3703 6
PubMed 2.0×104 4.4×104 500 3

CS 1.8×104 8.2×104 6805 15
Physics 3.4×104 2.5×105 8415 5

Election 3.1×103 2.3×103 9 2
Sexual 1.9×103 2.1×103 20 2

Elliptic 2.0×105 2.3×105 165 2
Payments 2.2×105 2.8×105 573 2

arXiv 1.7×105 1.2×106 128 40
Products 2.4×106 6.2×107 100 47

Synthetic MRF datasets. We sample data
from Markov random fields, i.e., from our
generative model. Specifically, we use a
51 × 51 grid graph, where each node belongs
to one of two possible classes. The neigh-
boring node labels are likely to be the same
if the coupling-potential is positive (denoted
+), and likely to be different if the coupling-
potential is negative (denoted −). This setup
is known as the Ising model in statistical
physics and models homophily or heterophily
in social networks [37], or assortativitity and
disassortativity more generally [38]. We also
consider a setup with three classes with either
positive or negative coupling-potentials. In
all settings, we use the grid coordinates as
features to predict labels.
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Table 3: Node classification performances on synthetic data with full-batch training. The synthetic is
sampled from our generative model, and, our algorithms are appropriately more accurate.

dataset MLP GCN SAGE GAT GMNN DeeperGNN GBPN-I GBPN

Ising+ 67.1 ± 1.6 67.1 ± 1.8 68.2 ± 1.5 64.4 ± 2.2 64.4 ± 3.1 65.6 ± 1.6 68.5 ± 1.8 75.0 ± 1.4

Ising− 48.8 ± 0.8 48.7 ± 0.7 48.4 ± 1.0 49.3 ± 0.9 49.4 ± 0.9 49.3 ± 1.1 48.3 ± 1.1 72.7 ± 1.4

MRF+ 64.2 ± 1.9 65.9 ± 2.0 64.8 ± 1.9 61.4 ± 2.3 45.8 ± 2.9 53.3 ± 3.8 66.5 ± 2.0 70.3 ± 1.7

MRF− 64.3 ± 4.1 66.3 ± 5.0 65.3 ± 4.6 62.3 ± 4.0 41.3 ± 5.3 53.1 ± 2.9 66.3 ± 5.0 73.5 ± 4.5

Citation graphs. We use the small benchmark graphs Cora, CiteSeer and PubMed [11], as well as
the larger arXiv benchmark [39], where the vertices represent articles and edges represent citations.
Features are derived from the article text, and the goal is to predict the research field of each article.

Co-authorship graphs. These are graphs of computer scientists and physicists [40], where nodes
are researchers, edges connect researchers that have coauthored a paper, node features are paper
keywords for each author, and the goal is to predict the most active field of study for each author.

U.S. election. This dataset comes from the 2016 presidential election, where nodes are U.S. counties,
and edges connect counties with the strongest Facebook social ties [26]. Each node has county-level
demographic features (e.g., median income) and social network user features (e.g., fraction of friends
within 50 miles). The goal is to predict the party (Republican or the Democrat) that won each county.

Sexual interactions. This is a social network where connections come from sexual interactions [24,
41]. Node features include occupation and retirement status, and the goal is to predict gender.

Financial transactions. We use two financial networks, where the nodes represent transactions and
the edges are payment flows. Node features are metadata associated with each transaction. The
Elliptic dataset is derived from bitcoin transactions [42], and transactions are labeled as licit or illicit.
The Payments dataset consists of synthetic payments that resemble real-world data, provided by
J.P. Morgan Chase & Co. Transactions are labeled as fraudulent or non-fraudulent.

Co-purchasing. Here, nodes are products on Amazon, and edges connect co-purchased products.
The features are the average word embeddings from the descriptions and labels are product categories.

3.1 Performance on Smaller Datasets

The datasets we consider here fits into three groups: 1© small synthetic graphs; 2© small real-world
graphs; 3© large-scale graphs. We first consider 1© and 2©, where training the entire graph can fit into
a single GPU. On these datasets, all models take at most 20 minutes to train on a Telsa V100 GPU.

For GBPN, we use a 2-layer MLP with 256 hidden units to map the features of each node to its
self-potentials. Then we run five steps of BP iterations to compute the predictions. For standard
baselines, we consider a 2-layer MLP, GCN, and GraphSAGE models with the 256 hidden units, as
well as a 2-layer GAT with four attention heads × 64 hidden units per layer. We also compare GBPN
with GMNN [20], which is also based on Markov random fields, as well as DeeperGNN [43], which
uses several hops of neighborhood information at anode. For both of these baselines, we use the
reference implementations1 with default hyperparameters for training and inference.

We randomly split all datasets into 30% training, 20% validation, and 50% testing. All baseline
methods are trained by minimizing the negative log-likelihood (NLL), while GBPN is trained with
the weighted NLL loss discussed in Section 2.4. For all methods, we use an AdamW optimizer with
learning rate 1.0 × 10−3 and decay rate 2.5 × 10−4 to perform full-batch training for 500 steps. The
testing accuracies are averaged over 30 runs and summarized in Tables 3 and 4.

On the synthetic networks sampled from MRFs, the transductive GBPN outperforms the other
methods by large margins (Table 3). The performance gap is due to two reasons. First, the underlying
data assumption of our model exactly matches the data. Second, GBPN is able to directly use training
labels for inference. On the empirical datasets, inductive and transductive GBPN outperform the
baselines in five of seven graphs (Tables 3 and 4). GBPN is more accurate on most of the coauthorship
and citation graphs, although the gains over the best baslines are modest. The differences on the
Election and Sexual datasets brings additional insights. The node labels in both datasets are binary;
however, election outcomes are homophilous, and the sexual interactions are heterophilous (most

1DeeperGNN is released under GNU General Public License while GMNN is under no license.
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Table 4: Node classification performances on smaller empirical datasets with full-batch training.

dataset MLP GCN SAGE GAT GMNN DeeperGNN GBPN-I GBPN

Cora 72.1 ± 1.3 87.1 ± 0.7 86.9 ± 0.8 87.1 ± 0.9 86.4 ± 0.9 87.2 ± 0.8 85.6 ± 0.7 86.4 ± 0.9

CiteSeer 71.2 ± 0.9 73.5 ± 1.0 73.2 ± 1.0 73.1 ± 1.2 72.9 ± 1.2 73.9 ± 0.8 74.7 ± 1.3 74.8 ± 0.8

PubMed 86.5 ± 0.2 87.1 ± 0.3 87.8 ± 0.4 88.1 ± 0.3 86.7 ± 0.2 84.7 ± 0.3 88.4 ± 0.3 88.5 ± 0.3

CS 94.2 ± 0.2 93.2 ± 0.2 93.7 ± 0.2 94.0 ± 0.3 93.3 ± 0.3 94.9 ± 0.2 95.5 ± 0.2 95.5 ± 0.3

Physics 95.8 ± 0.1 96.1 ± 0.1 96.3 ± 0.1 96.3 ± 0.1 96.1 ± 0.1 96.7 ± 0.1 96.9 ± 0.1 96.9 ± 0.1

Election 89.6 ± 0.6 88.0 ± 0.6 90.8 ± 0.6 90.5 ± 0.7 87.3 ± 0.7 85.4 ± 0.7 90.1 ± 0.8 90.3 ± 0.9

Sexual 74.5 ± 1.4 83.9 ± 1.2 93.3 ± 0.8 93.6 ± 0.9 77.0 ± 1.7 65.0 ± 1.1 97.1 ± 0.5 97.4 ± 0.4

(d) MRF−: ground truth & learned H(c) MRF+: ground truth & learned H

(b) Ising−: ground truth & learned H(a) Ising+: ground truth & learned H

(g) PubMed: learned H

(e) Election: learned H (f) Sexual: learned H

0.0

0.5

1.0

Figure 2: Visualization of the learned coupling matrices. (a–d) Synthetic datasets, with ground truth
coupling matrices on the left and learned coupling matrices on the right. (e–g) Election, Sexual, and
PubMed empirical datasets, where we recover homophilous, heterophilous, and mixed affinities.

relationships used to construct the dataset are heterosexual). GBPN is comparable to the best baseline
on the Election network (GraphSAGE in this case), it outperforms the baselines by large margins
on the Sexual network. This is because GBPN can explicitly learn heterophily with the coupling-
potential (Figure 2f), while the standard GNN models are designed for homophilous graphs [24, 44].
Finally, although the transductive GBPN consistently outperforms its inductive counterpart, the gap
between them is small, as the predictive probabilities on the training nodes are already quite accurate.

3.2 Identifiability, Interpretability and Convergence

A useful aspect of GBPN is that the learned coupling-potentials H can be interpreted as between-class
affinities. We first confirm that GBPN identifies the true coupling-potentials used to generate the
synthetic graphs. Indeed, Figures 2a to 2d shows that the learned H is close to the parameters used
to generate the data, although the exact numbers have minor differences.

Next, we examine the learned coupling matrices for some empirical datasets (Figures 2e to 2g). The
learned coupling-potentials are homophilous on the Election network and strongly heterophilous in
the Sexual network, which reflect the fact that the election outcome in neighboring counties tend to
be the same and that most sexual interactions in the dataset are heterosexual. On the PubMed citation
network, node labels 0, 1, 2 correspond to medical publications on experimental diabetes,
adult-onset diabetes, and juvenile diabetes respectively. The learned coupling matrix
shows that papers citing each other tend to be in the same field, as shown by the large diagonal values.
Beyond this, the smallest value is between adult-onset diabetes and juvenile diabetes.
This aligns with the fact that those two type of diseases are largely among different age groups.

Another interesting component of the GBPN model is that we can examine intermediate predictions
computed during belief propagation. Although belief propagation is not guaranteed to converge on
graphs with cycles, GBPN converged quickly on all real-world graphs, oftentimes in a handful of
iterations. Here, we consider the PubMed dataset in detail, using the setup in section 3.1. After
training, we run belief propagation to compute the belief probability {p

(t)
i }i∈V for all nodes for

up to T = 20 steps. To evaluate BP convergence, we measure the norm of the difference between
the belief at step t and the converged belief, ∥p(t)i − p

(∞)
i ∥ ≈ ∥p

(t)
i − p

(20)
i ∥, along with the train
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(a) (b)

Figure 3: Convergence of GBPN on the PubMed dataset. (a) Approximate residual error at step
k in the blue and train/test accuracies in red/green. (b) Nodes correctly predicted with the GBPN
algorithm, where the coordinates are given by a graph spectral embedding; the color indicates the
step k after which the prediction is always correct.

(b)  70% high-degree nodes (c)  30% low-degree nodes (a)  results on all testing nodes

Figure 4: Visualization of the misalignment between the (unweighted) negative log-likelihood loss
function and prediction accuracy on a graphs with high degree heterogeneity. (a) when training
GBPN with degree regularization, the predictive log-likelihood on the testing nodes decreases while
accuracy increases. (b) this misalignment is caused by 70% of nodes with the highest degrees. (c) on
the rest 30% of low-degree nodes, the log-likelihood aligns perfectly with accuracy.

and test accuracies (Figure 3). The result shows that GBPN converges linearly with the number of
belief-propagation steps, and the train and test accuracies change little after a handful of iterations.

To help understand BP convergence and the algorithm in general, we also visualize how each BP step
refines the final prediction (Figure 3). We plot the nodes that are correctly predicted by GBPN at
step 5, where the coordinate of each node is computed by compressing its spectral embeddings [45]
and features together with UMAP [46], and the color indicates the step after which the prediction is
always correct. Nodes corrected at later steps (e.g., t = 5 in dark red) are typically surrounded by
others examples that are already corrected earlier. This behavior reflects the mechanism of the GBPN
model: start with easy data points and iteratively correct harder examples with neighbor information.

3.3 Neighborhood Sub-sampling and Performance on Larger Datasets

In Section 2.4, we identified the misalignment between the unweighted NLL loss function and the
classification accuracy on graphs with high degree heterogeneity, which prompts us to down-weight
the high degree nodes. Here, we consider neighborhood sub-sampling as an alternative solution to
the misalignment problem, which also reduces computation and enables efficient mini-batch training.

To demonstrate how degree heterogeneity causes the misalignment and consequently hurts accuracy,
we manually reduced the degree heterogeneity by regularizing the high degree nodes during training.
In particular, we train a 1-hop GBPN on the OGBN-arXiv dataset with the unweighted NLL loss,
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Figure 5: Demonstration of the sub-sampling algorithm on a simple graph. (a) the original graph.
(b) the unrolled tree from the root node u. (c) the sub-sampled tree when the maximum degree is 2.

Table 5: Node classification performances on large-scale empirical datasets with mini-batch training.

dataset MLP ClusterGCN SAGE GAT GBPN-I GBPN

Elliptic 88.4 ± 0.3 81.4 ± 0.6 88.5 ± 0.5 88.3 ± 0.3 90.0 ± 0.7 90.1 ± 0.7

Payments 6.9 ± 0.5 40.7 ± 1.5 26.6 ± 1.2 19.0 ± 1.2 47.9 ± 1.0 53.2 ± 1.3

arXiv 54.9 ± 0.3 66.4 ± 0.5 70.2 ± 0.1 70.1 ± 0.4 70.7 ± 0.3 71.8 ± 0.3

Products 61.3 ± 0.1 77.5 ± 0.7 78.6 ± 0.2 74.8 ± 2.2 81.8 ± 0.3 81.8 ± 0.2

uniformly sub-sampling a maximum number of neighbors during the aggregation step in eq. (8) (or
all neighbors if the degree is below the threshold). At inference, we run GBPN with all neighbors to
predict the testing labels. Figure 4a shows the average log-likelihood and accuracy on the testing
nodes as a function of the maximum number of neighbors, and reducing this number improves the
testing accuracy. At the same time, the log-likelihood of the testing node decreases, showing the
misalignment. We further split the testing nodes into the 30% lowest degree nodes and the rest 70%,
and find that the log-likelihood and accuracy aligns on the low-degree nodes (Figure 4b) but not on
the high-degree nodes (Figure 4c). This justifies our heuristic of down-weighting high degree nodes.

For large-scale graphs where mini-batch training is necessary, neighborhood sub-sampling improves
the classification accuracy and also reduces computational costs. In particular, computing the T -step
belief of a node i requires unrolling a computation tree [47] that includes all T -hop neighbors of i,
which can quickly grow to the entire graph. With neighborhood sub-sampling, we randomly select
a maximum of d neighbors per node when unrolling the tree, and the sub-sampled tree has O(dT )
nodes (Figure 5). This is similar to sub-sampling in GNNs to address scalability [6], although our
sample is a tree and also explicitly down-weights high-degree nodes.

We test the performance of GBPN with mini-batch training on four large-scale real-world datasets.
The experimental setup is the same as in Section 3.1, except we only train for 100 epochs, as the model
parameters are updated multiple times per epoch. We repeat each experiment only 10 times because
accuracy has smaller variance. During GBPN training, we use T = 2 BP steps and a maximum of
5 sampled neighbors. Training on the largest dataset (Products) takes about one minute per epoch
and less than two hours overall on a Telsa V100 GPU. For a fair comparison, we use a similar
neighborhood expansion method for mini-batch training of GraphSAGE and GAT, with the branching
factor set to 5. We replace the GCN baseline with ClusterGCN [48], where we set the average size
per cluster to be 256 and the number of clusters per mini-batch to be 3; other hyperparameters are
kept the same. We do not include GMNN and DeeperGNN as baselines since neither of the reference
repositories implemented mini-batch training. The labels in the Elliptic and Payments datasets are
highly imbalanced as most transactions are licit, so we measure the prediction performance with the
F1 score (×100) on the illicit class. Performance on the arXiv and Products datasets is measured
by the classification accuracy. We find that GBPN-I outperforms the baselines on all four datasets
(Table 5), and GBPN provides additional gains on the Payments and arXiv datasets.

In addition to uniform sampling, we also experimented with importance sampling, which has proven
useful for training certain graph neural networks [49, 50]. The results are summarized in Appendix B.

4 Conclusions and Future Work

We investigated belief propagation as a model component for node classification, developing a model
that combines the advantages of graph neural networks and collective classification. Our model is
easy-to-train, accurate, and scalable while maintaining interpretability and having a natural way to
incorporate training labels for inference. Results on real-world datasets justify our claims. There
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are several fruitful directions for future research. For instance, since BP often converges to a fix
point, implicit differentiation could be used to reduce memory consumption [51]. One could also
extend edge potentials to motif potentials to incorporate higher order interactions. Finally, although
our algorithms are generic, improvements in node classification could lead to more personalized ad
targeting or reasoning about sensitive information, which could have negative societal impact.
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A Supplementary Materials for Reproducing the Main Results

Here we provide some implementation details of our methods to help readers reproduce and further
understand the algorithms and experiments in this paper.

A.1 Additional Details on Implementations

Algorithm 1: The inference (i.e. forward propagation) algorithm for inductive GBPN.
Input : graph topology G(V,E); node features {xi}i∈V ; number of BP iterations T ;

self-potential mapping gθ; coupling matrix H

Output : prediction for each node label {ŷi}i∈V
/* step 0: initialize messages */

1 for (i, j) ∈ E do
2 for yj = 0 . . . (c − 1) do
3 logm

(0)
ij (yj)← − log c

4 for yi = 0 . . . (c − 1) do
5 logm

(0)
ji (yi)← − log c

/* step 1: initialize beliefs */
6 for i ∈ V do
7 for yi = 0 . . . (c − 1) do
8 log p

(0)
i (yi)← log gθ(yi;xi)

/* step 2: belief propagation iterations */
9 for t = 1 . . . T do

10 for (i, j) ∈ E do
11 for yj = 0 . . . (c − 1) do
12 logm

(t)
ij (yj)¢ LSEyi [logHyi,yj + log p

(t−1)
i (yi) − logm

(t−1)
ji (yi)]

13 for yi = 0 . . . (c − 1) do
14 logm

(t)
ji (yi)¢ LSEyj [logHyj ,yi + log p

(t−1)
j (yj) − logm

(t−1)
ij (yj)]

15 for i ∈ V do
16 for yj = 0 . . . (c − 1) do
17 log p

(t)
i (yi)¢ log p

(0)
i (yi) +∑j∈N(i) logm

(t)
ji (yi)

/* step 3: final predictions */
18 for i ∈ V do
19 ŷi = arg maxyi p

(T )
i (yi)

Here, we summarize the inductive GBPN variant in algorithm 1, where ¢ denotes “assign after
normalization.” In contrast, the transductive GBPN initializes the belief log p

(0)
i (yi) on each training

node i ∈ L to be log p
(0)
i (yi) = 0 if yi is the ground-truth class and log p

(0)
i (yi) = −∞ otherwise.

A.2 Additional Details on Experimental Setup

Architectures. The first step of GBPN is to map the features on each node into a c-dimensional initial
belief (or self-potential) vector using a MLP. For this MLP, we use a 2-hidden-layer feedforward
network with 256 hidden units and ReLU activation function. During training, on each dataset with
a small feature dimension relative to the number of training nodes (Ising, MRF, County, Sexual,
Elliptic, Payment, arXiv, Products), we set the dropout probability to 0.1; on each dataset with a
large feature dimension relative to the number of training nodes (Cora, CiteSeer), we set the dropout
probability to 0.6; on the rest of the datasets (PubMed, CS, Physics), we set the dropout probability
to 0.3. The same activation function and dropout probabilities are used for baseline methods.
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Optimization. For all methods except for GMNN and DeeperGNN, the parameters are optimized
using a AdamW optimizer with with β1 = 0.9, β2 = 0.999, learning rate 1.0 × 10−3, and decay rate
2.5×10−4. All experiments are performed on a server with a Xeon 6254 CPU and a Telsa V100 GPU.

A.3 Additional Details on Datasets

Synthetic MRF datasets. We sample random configurations from MRFs defined on a 2-dimensional
grid graph. A MRF configuration assigns a label to every node in the graph. The MRF models we
use consist of two types of potentials: (i) the self-potential on each node (ii) the coupling-potential
between each pairs of neighboring nodes. While the coupling-potential for each dataset is shown in
fig. 2, here we describe how we set the self-potentials on each node. Let ri1 and ri2 denote the first
and second grid coordinates of node i normalized between −1.0 and +1.0, the self-potential hi(yi)
on each node i is defined as a function of the coordinates.

• Ising+: hi(0) = exp (−0.35 ⋅ ri1 ⋅ ri2), hi(1) = exp (+0.35 ⋅ ri1 ⋅ ri2)

• Ising−: hi(0) = exp (−0.35 ⋅ ri1 ⋅ ri2), hi(1) = exp (+0.35 ⋅ ri1 ⋅ ri2)

• MRF+: hi(yi) = sigmoid(0.2 ⋅ si(yi)); si(0) = 0, si(1) = r2
i1 + r

2
i2 − 0.65, si(2) = −si(1)

• MRF−: hi(yi) = sigmoid(0.6 ⋅ si(yi)); si(0) = 0, si(1) = r2
i1 + r

2
i2 − 0.00, si(2) = −si(1)

We use the Metropolis algorithm for simulating the Ising models and Gibbs sampling [33] for
simulating the 3-class MRF models. The synthetic datasets are released together with our GBPN
implementation.

B Importance Sampling

In section 3.3, we observed that regularizing high degree nodes during training — by aggregating
messages across a small and uniformly sampled neighborhood N ′(i) rather than the entire neigh-
borhood N(i) — leads to a boost in both accuracy and computational efficiency. However, one
potential concern is that estimation with uniformly sampled neighbors has high variance. To this end,
we explore importance sampling to reduce the variance. Surprisingly, we find the optimal sampling
distribution that minimizes the variance is very close to uniform sampling on benchmark datasets.

B.1 Theoretical Optimal Distribution for Importance Sampling

We first formulate the neighbor sub-sampling procedure according to an arbitrary sampling distribu-
tion p ∈ [0,1]∣N(i)∣ by considering a sequence of d ≤ ∣N(i)∣ independent and identically distributed
(i.i.d.) draws of neighbor indices, N ′(i) = (j1, . . . , jd), where each j is sampled according to p. For
each of the samples j ∈ N ′(i), let

Xj(yi) = logm
(k)
ji (yi) (13)

be the random variable corresponding to the message from j ∈ N ′(i) for class yi. Further denote the
sum of the incoming messages over the sampled neighbors with respect to class yi as X(yi), i.e.,

X(yi) = ∑
j∈N ′(i)

Xj(yi). (14)

Denote the joint distribution of all d samples as pd, we can compute the expectation of X(yi),

EN ′(i)∼pd[X(yi)] = ∣N ′
(i)∣Ej∼p[Xj(yi)] (linearity of expectation & i.i.d. sampling)

= ∣N ′
(i)∣ ∑

j∈N(i)
(logm

(k)
ji (yi))pj (definition of Ej∼p[Xj(yi)])

=
∣N ′(i)∣

∣N(i)∣
∑

j∈N(i)
logm

(k)
ji (yi). (pj = 1/∣N(i)∣ for uniform sampling)

Hence, X(yi) is an unbiased estimator for the quantity

Ω(yi) =
∣N ′(i)∣

∣N(i)∣
∑

j∈N(i)
logm

(k)
ji (yi), (15)
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which represents the scaled aggregate messages from all neighbors N(i). However, the estimation
given by X(yi) may have high variance. Thus, we use an unbiased and low-variance estimator
defined by importance sampling. In particular, we consider the following estimator:

Z(yi) = ∑
j∈N ′(i)

Zj(yi) = ∑
j∈N ′(i)

Xj(yi)

∣N(i)∣ ⋅ pj
, (16)

which simply re-weights Xj(yi). It is easy to show Z(yi) is an unbiased estimator for Ω(yi):

EN ′(i)∼pd[Z(yi)] = ∣N ′
(i)∣Ej∼p[Zj(yi)] =

∣N ′(i)∣

∣N(i)∣
Ej∼p[Xj/pi] (17)

=
∣N ′(i)∣

∣N(i)∣
∑

j∈N(i)
logm

(k)
ji (yi). (18)

Now, our goal is to find a probability distribution p∗ ∈ [0,1]∣N(i)∣ so that Z(yi) has smallest possible
variance, i.e.,

p∗ = argminpVarpd(Z(yi)), (19)

where Varpd(Z(yi)) is the variance of Z(yi) under the sampling distribution pd. The variance
further simplifies to

Varpd(Z(yi)) = ∣N ′
(i)∣Varp(Zj(yi)) (i.i.d. sampling)

=
∣N ′(i)∣

∣N(i)∣2
Varp(Xj(yi)/pj) (definition of Zj(yi))

=
∣N ′(i)∣

∣N(i)∣2
(Ep[(Xj(yi)/pj)

2
] −Ep[Xj(yi)/pj]

2) .

By unbiasedness, we have that (E[Xj(yi)/pj])
2 = (∑j∈N(i) logm

(k)
ji (yi))

2
, which implies that

the distribution p that minimizes the variance is the one which minimizes the second moment
Ej∼p[(Xj(yi)/pj)

2]. This evaluates to

Ej∼p[(Xj(yi)/pj)
2
] = ∑

j∈N(i)
(logm

(k)
ji (yi))

2
/pj . (20)

The expression above is convex in p, so using the method of Lagrange multipliers,2 we find that the
minimizer is given by

p∗j ∝ ∣ logm
(k)
ji (yi)∣ ∀j ∈ ∣N(i)∣. (21)

Since we want a distribution that minimizes the variance over all potential classes yi ∈ {0, . . . , c − 1},
we further consider minimizing the sum of variances over all classes

p∗ = argminp∑
yi

Varpd(Z(yi)). (22)

When the number of samples is clear from context, we will let

Var(p) =∑
yi

Varpd(Z(yi)) (23)

denote the sum of variances over all classes under distribution p. An analogous derivation leads to
the optimal distribution having the form

p∗j ∝
√

∑
yi

(logm
(k)
ji (yi))2. (24)

2More generally, the distribution pi = ∣xi∣/∑j ∣xj ∣ minimizes the sum ∑i x2
i /pi.
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B.2 Online Learning

We would ideally like to sample the neighbors according to the optimal sampling distribution as
defined above, but the optimal distribution requires knowledge of all of the neighbors’ messages.
Since we do not know the messages prior to sampling, we are faced with the dilemma where we
cannot sample optimally prior to seeing the messages, but cannot see the messages until we sample.
We can address via the well-studied exploration-and-exploitation trade-off in online learning with
partial information, which includes the Multi-armed Bandit setting [52, 53].

We formulate the variance minimization problem as an online learning problem where the goal is to
minimize the regret (sum of variances) with respect to the best sampling distribution in hindsight. In
particular, we consider the linearized, partial-information setting where the losses at each epoch `τ
correspond to the gradient of the variance, i.e., for each j ∈ N ′(i),

`τ,j = −

√

∑yi(logm
(k)
ji (yi))2

p2
τ,j

, (25)

and `τ,j = 0 for all j ∉ N ′(i), where pτ,j is the probability of sampling neighbor j at epoch τ . Note
that we are in the partial information setting since we do not see the messages of all neighbors, but
only those of sampled neighbors, so we will need to reweigh the losses `τ,j by an additional pτ,j term
in the denominator so that we can approximate the full gradient in expectation (see [52, Algorithm
10.2] for details). Our overarching goal is to bound the expected regret with respect to the best
distribution in hindsight,

Regret({pτ}) =∑
τ

Var(pτ) −min
p∈∆
∑
τ

Var(p). (26)

where pτ ∈ ∆ is the sampling distribution at epoch τ and ∆ is the probability simplex. By convexity
of the variance with respect to the probabilities p, the regret defined above is upper bounded by the
following linearized regret, i.e.,

Regret({pτ}) ≤∑
τ

⟨pτ , `τ ⟩ −min
p∈∆
∑
τ

⟨p, `τ ⟩, (27)

Hence, minimizing this upper bound would guarantee that the sequence of sampling distributions
we used in sampling the neighbors of a node i is competitive with the best sampling distribution in
hindsight. It can be shown [52, Theorem 10.2] that for an appropriate choice of the learning rate,
the regret of the EXP3 algorithm with respect to sampling the neighbors of node i is bounded by
O (

√
log(∣N(i)∣) ∑τ Ej∼p[`2τ,j]).

B.3 Empirical Evaluations & Discussion

We implemented the adaptive version of EXP3 with time-varying learning rates [52, Chapter 7.6];
other variants of EXP3 provide similar regret guarantees [49, 50]. Across evaluations on the data sets
described in Table 2, we observed very similar performance between our regret-based, importance
sampling approach and uniform sampling. Even for cases where importance sampling with EXP3
improved the accuracy, these improvements were not significant in our evaluations, i.e., they were
well-within one standard deviation of uniform sampling’s performance.

To dig deeper into our (unexpected) findings, we questioned whether EXP3 (and importance sampling)
was providing a variance reduction at all. To this end, we plotted the variance of the distribution
generated by EXP3 and compared it to the variance under the optimal sampling distribution p∗τ in
hindsight (computed as in eq. (24)) after each training epoch τ . We performed the calculation for
uniform sampling. Note that unlike in the regret definition above, p∗τ is the optimal distribution with
respect to epoch τ , meaning that it has the lowest variance for epoch τ possible, Varopt

τ . We also
directly compared the variance of our importance sampling distribution with that of uniform sampling,
to determine whether the similarity in performance was a result of similar estimator variance.

Figure 6 depicts the results of our evaluations on the Cora, PubMed, and arXiv datasets. In Figure 6a,
we plot the ratio for the variances under IMPORTANCE and UNIFORM distributions relative to the
variance Varopt

τ under the optimal distribution p∗τ . We observe that after a brief burn-in period, the
variance ratio of IMPORTANCE is very close to 1, implying that EXP3 in fact generates sampling

16



(a) Variance Relative to Optimal (Varoptτ ) (b) Variance of IMPORTANCE relative to UNIFORM

Figure 6: Evaluations of the relative variance under our sampling distribution and uniform sampling
on varying data sets. The ratio of the variances are averaged over all nodes per trial and shaded
regions correspond to the values within one standard deviation from the mean.

distributions that are essentially optimal (p∗τ ) for each time step. In fact, we see that as time progresses,
our online learning algorithm is able to learn increasingly better (closer to optimal) distributions. On
the other hand, uniform sampling’s performance relative to the optimal sampling distribution tends
to degrade over the training process. Similarly, in fig. 6b, where we directly compute the ratio of
variances between IMPORTANCE and UNIFORM, i.e.,

ρτ =
Varimportance

τ

Varuniform
τ

, (28)

we see IMPORTANCE increasingly outperforms UNIFORM (ρτ < 1) after the initial 10-20 epochs.

Despite the qualitatively encouraging results, the scales of the y-axis in fig. 6 help us understand why
IMPORTANCE does not ultimately lead to better performance in terms of test accuracy. In particular,
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Figure 6 shows that we achieve at most only 5% reduction in variance relative to uniform sampling
throughout virtually the entire training process. These empirical evaluations suggest that uniform
sampling is very close to the per-time-step optimal distribution p∗τ and provide an explanation for the
lack of statistically significant improvement in test accuracy we observed with importance sampling.

We envision that practitioners can bridge online learning with our framework and use, e.g., EXP3 as
we described it here, on scenarios where uniform sampling of neighbors may not be close to optimal.
By bridging tools with theoretical guarantees from online learning with our work, we can in effect
bound the worst-case performance of our sub-sampling procedure against even adversarial inputs. In
future work, we plan to investigate scenarios where importance sampling can in fact yield significant
improvements when it comes to both variance reduction and increased test accuracy.
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