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Introduction: A recent paper by Daubechies et al. claims that two independent 
component analysis (ICA) algorithms, Infomax and FastICA, widely used for fMRI 
analysis2, select for sparsity and not independence1. We show that their synthetic data 
based experiments fall short of proving this claim and that these ICA algorithms are 
doing what they are designed to do: identify maximally independent sources. 
 
Methods: Daubechies et al.1 shows results in which (1) ICA algorithm performance 
suffers when the assumptions on the sources are violated, and (2) ICA algorithms can 
separate sources in certain cases even if the sources are not strictly independent. The 
two points above, already widely known in the ICA community at the time, are not 
sufficient evidence to support the claim that ICA selects for sparsity and not 
independence. In addition, Daubechies et al.1 presents a case in which the sources are 
somewhat dependent but also very sparse, and ICA does well. This result is used to 
claim that it is sparsity rather than independence that matters. We augment this 
experiment with new evidence which shows that the same ICA algorithms perform 
equally well in the case of minimum sparsity, suggesting that the role of sparsity (if any) 
is minor in the separation performance. 

Additional evidence involves a claim that ICA separates Gaussian sources which 
are also sparse, which ICA should not be able to do. We show that the sources they 
generated are far from Gaussian, and the sparsity mentioned in 1 does not even refer to 
the sources. Thus the results do not support the claim being made. 
 
Results: Daubechies et al. argues, based largely on results from synthetic datasets 
using different sized boxes to represent activated regions of a component, that it is 
sparsity and not independence that is important1. In Figure 1, we see that excess 
kurtosis of the simulated sources for the two cases where Infomax and FastICA are 
noted to fail (but it is claimed they should not) is very close to zero. Moreover, at these 
points the distributions are bimodal, far from the unimodal super-Gaussian assumptions 
that underpin the nonlinearities of Infomax and FastICA1 creating very challenging 
scenarios for Infomax and FastICA. In actuality, the sources are not even close to the 



“ideal” setup for these algorithms, contrary to the claim on p.104181. It is thus expected 
that these algorithms would do poorly.  

The paper1 notes that mixtures of independent Gaussian random variables 
cannot be recovered by ICA, which is true if each source comes from a single Gaussian 
distribution, and then shows that ICA can recover sources in this case. The sources 
generated are claimed to be sparse and Gaussian and the successful recovery of the 
sources is claimed as evidence that sparsity is the driving force helping ICA to recover 
Gaussian sources. However, there are two problems with this argument. First, the 
sparsity mentioned is not in the relevant domain. And secondly, this example utilizes a 
mixture of Gaussians as the sources and hence the sources themselves are in fact 
super-Gaussian (i.e. they have positive excess kurtosis). Infomax and FastICA are 
expected to successfully separate such sources (see Figure 2). This example again 
points to a confusion with respect to the definition of the underlying ICA sources, i.e., 
what is actually being simulated and what is assumed in Daubechies et al.1. 
 
Conclusions: We conclusively show that the arguments in Daubechies et al.1 fall short 
in supporting the claim that Infomax and FastICA select for sparsity and not for 
independence. While pointing out the use of other metrics for fMRI analysis such as 
sparsity is a reasonable goal, the claims used to justify this desire are misleading at 
best and in some cases are simply incorrect. In summary, FastICA and Infomax are 
doing what they were designed to do: maximize independence. 
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Figure 1: The excess kurtosis (a Gaussian has zero excess kurtosis) of a source    as a function of the 

relative size of the active region. The four vertical lines at                           correspond 

to the relative sizes of the small box, the medium box   , the large box   , and a very large box 

corresponding to the maximal kurtosis case. Note that the medium and large box experiments have near 

zero excess kurtosis, i.e., kurtosis value matching that of a Gaussian. In addition, the pdfs of these 

sources are bimodal (see inset figures), ensuring that ICA algorithms designed for unimodal super-

Gaussian distributions such as Infomax and FastICA with standard parameter settings, will likely fail. At 

the bottom of the figure are the ISI values (see Equation 1) for the various algorithms at those four 

points (see Error! Reference source not found. for full list). Also note the best separation performance 

of Infomax and FastICA for the maximum kurtosis case, which corresponds to almost the lowest level of 

sparsity. 

 

 

  



Figure 2: We plot (top) the distribution of sources, and (bottom) the scatter plot of mixtures for the case 

of     for 30% of the time. Contrary to the claim made in Daubechies et al., the sources have in fact 

very peaky and heavy-tailed distributions and are not at all close to a Gaussian distribution. For 

comparison purposes we also present Gaussian distribution curves (blue)  

 

 

 


