
Sparseness and a Reduction from Totally

Nonnegative Least Squares to SVM

Vamsi K. Potluru and Sergey M. Plis and Shuang Luan and Vince D. Calhoun and Thomas P. Hayes

Abstract—Nonnegative Least Squares (NNLS) is a general
form for many important problems. We consider a special
case of NNLS where the input is nonnegative. It is called
Totally Nonnegative Least Squares (TNNLS) in the literature.
We show a reduction of TNNLS to a single class Support Vector
Machine (SVM), thus relating the sparsity of a TNNLS solution
to the sparsity of supports in a SVM. This allows us to apply
any SVM solver to the TNNLS problem. We get an order of
magnitude improvement in running time by first obtaining a
smaller version of our original problem with the same solution
using a fast approximate SVM solver. Second, we use an exact
NNLS solver to obtain the solution. We present experimental
evidence that this approach improves the performance of state-of-
the-art NNLS solvers by applying it to both randomly generated
problems as well as to real datasets, calculating radiation therapy
dosages for cancer patients.

I. INTRODUCTION

Quite a few problems in machine learning and signal

processing can be cast as Nonnegative Least Squares (NNLS)

problems. The NNLS problem is fairly old and the algorithm

by Lawson and Hanson [1974] appears to be one of the first to

solve it. NNLS problems frequently come up in practice and

there are quite a few algorithms to solve them Lawson and

Hanson [1974], Kim et al. [2006], Bro and De Jong [1997],

Van Benthem and Keenan [2004]. Note that the nonnegativity

constraint is pretty natural in real problems, for instance, when

we are modeling chemical concentrations, brain activations,

and color intensities. Real world applications include target

detection at subpixel level in remote sensing images [Chang

and Heinz, 2000], and resolving tags into genes in the SAGE

datasets [Zeng and Ogihara, 2009].

The special case ”Totally Nonnegative Least Squares”

(TNNLS) in which the input is all nonnegative was introduced

by Merritt and Zhang [2005]. TNNLS has been applied to

compressive sensing by O’Grady and Rickard [2008] who

showed that nonnegativity is enough to recover a sufficiently

sparse signal. Bruckstein et al. [2008] have explored the

connection between uniqueness of nonnegative sparse solu-

tions of underdetermined systems of equations while Donoho

and Tanner [2006] explored thresholds for recovery of sparse

solutions via l1 minimization. But why is there this connection

between nonnegative entries and sparsity?

We shed light on this question, by presenting a general

reduction from TNNLS to a single class SVM problem. This

Vamsi K. Potluru(email: ismav@cs.unm.edu), Shuang Luan(email:
sluan@cs.unm.edu) and Thomas P. Hayes(email: hayes@cs.unm.edu) are
with Department of Computer Science, University of New Mexico, USA.
Vince D. Calhoun(email: vcalhoun@mrn.org) and Sergey M. Plis(email:
pliz@cs.unm.edu) are with Mind Research Network, New Mexico, USA.

shows that nonnegativity constraint gives us a sparse solution

depending on the number of supports required to define a

maximum-margin hyperplane of the suitably defined single

class SVM problem. Thus, the sparsity of the solutions to

TNNLS is directly tied to the size of the support of a related

SVM problem.

A brief history of connections between SVM’s and regres-

sion will place this work in perspective. Hochreiter and Mozer

[2001] established an isomorphism between sparse separation

and ǫ-SVM regression and used it to kernelize sparse separa-

tion. Similarly, a connection between Lasso and SVM’s was

established by Li et al. [2006] and further exploited for the

kernel version of Lasso. Furthermore, the kernel adatron (KA)

algorithm for solving SVM [Frießet al., 1998] resurfaced in the

NNLS algorithm from Franc et al. [2005]. This allows us to

predict, for instance, that the sequential minimal optimization

(SMO) algorithm developed for SVM [Platt, 1998] will find

application in solving NNLS problems with a sum constraint,

for example the problem in Chang and Heinz [2000]. We note

that Lasso, SVM, NNLS are all special cases of Nonnegative

Quadratic Programming (NQP). So, it is not surprising that

algorithms developed for one problem can be applied to

another. However, it would be nice if we could do this

automatically and with minimal effort.

In this paper, we show that for TNNLS, we can reduce it

to a special case of SVM. So, quite a few solvers developed

for SVM can be mechanically applied to solve TNNLS. In

particular, we reduce TNNLS to the dual formulation of the

single class SVM problem.

Moreover, our reduction can be used to solve TNNLS more

efficiently. First, apply our reduction, and use an SVM solver

to approximately solve the problem which enables us to find a

large subset of the zeros of the solution vector. Then solve the

smaller problem (with the zeros eliminated) by using an exact

NNLS solver. We will describe some experiments comparing

the speed of this approach with direct application of existing

NNLS solvers.

II. PRELIMINARIES

We give an introduction to the TNNLS and SVM problems.

A. Totally Nonnegative Least Squares

Let W ∈ Rm×n be a matrix and x ∈ Rm a column vector.

The nonnegative least squares problem (NNLS) is to find a

column vector h ∈ Rn minimizing the following objective

function:

G(h) =
1

2
‖x−Wh‖22 s.t. h ≥ 0 (1)

If we additionally constrain all the elements of matrix W to

be nonnegative and vector x to be positive, we get a special

case of NNLS, which is referred to in the literature as totally

nonnegative least squares or TNNLS.

Actually, we solve a slightly more general version of the

problem. The only constraint we have on W and x is that

W Tx is nonnegative. This includes the case of TNNLS.

However, we will focus on TNNLS for this paper.

Many algorithms have been developed over the years to

solve the NNLS problem. A brief history of these can be

found in Kim et al. [2006]. For instance, the NNLS algo-

rithm of Lawson and Hanson [1974] was modified by Bro

and De Jong [1997] and was called FAST-NNLS(FNNLS).

However, FNNLS requires the computation of matrix-matrix

product (of the input matrix) and can be expensive for large-

scale problems. This was ameliorated in the case of multiple

right hand sides by Benthem and Keenan Van Benthem and

Keenan [2004] and was called FCNNLS. We do not consider

FCNNLS in this paper for we are solving NNLS problems with

a single right hand side. Recently, advances in fast randomized

projections have lead to the development of a randomized

algorithm for NNLS which involves first employing a ran-

domized Hadamard transform to construct a smaller NNLS

problem. This is then solved by a standard NNLS solver. This

is the main idea for the NNLS solver in Boutsidis and Drineas

[2009] .

B. Support Vector Machines

Support vector machines (SVM) are now routinely used

for many classification problems in machine learning as seen

in Schölkopf and Smola [2001], Kecman [2001], Wang [2005]

due to their ease of use and ability to generalize. In the basic

case, the input data, corresponding to two groups, is mapped

into a higher dimensional space, where a maximum-margin

hyperplane is computed to separate them. The “kernel trick”

is used to ensure that the mapping into higher dimensional

space is never explicitly calculated. This can be formulated

as a non-negative quadratic programming (NQP) problem and

there are efficient algorithms to solve it, for instance Platt

[1998].

Recently, the cost of training of kernel SVM’s has shifted

the focus of the SVM community back to linear SVM for large

scale applications. This has lead to the formulation of very

efficient linear SVM solvers which converge to a ǫ precision

solution in linear(in the number of training points) time as

seen in the papers by Franc and Sonnenburg [2008], Hsieh

et al. [2008].

C. Linear SVMs

Given labeled training examples (si, yi)
n
i=1 where yi = ±1

and a regularization constant C > 0, SVMs learn a linear

classification rule. The primal formulation of the binary class

linear SVM is:

min
w

P (w) :=
1

2
‖w‖22 + C

n∑

i=1

max{0, 1− yi(〈w, si〉)} (2)

The dual formulation of the single class linear support vector

machine (SVM) Schölkopf and Smola [2001] is to minimize

the following objective function:

F (v) =
1

2
vTAv − 1

Tv s.t. 0 ≤ v ≤ C1 (3)

where A is the Gram matrix of data points({si}
n
i=1) given by

Aij = yiyjs
T
i sj . Our formulation assumes that the maximum-

margin hyperplane passes through the origin. Note that, if

we set C to ∞ we get the hard-margin maximum margin

formulation for linear SVM.

III. OUR REDUCTION FROM TNNLS TO SVM

Next, we describe a general framework for reducing TNNLS

to SVM. In particular, we show that the TNNLS problem can

be reduced to solving a hard-margin single class dual SVM

problem. We are now in a position to sketch the reduction from

TNNLS to SVM. Let D denote the diagonal matrix whose

diagonal elements are given by the vector 1
W Tx . Also, let

h = Dz. Then,

G(z) =
1

2
‖x−WDz‖22

=
1

2
zT (WD)T (WD)z − xTWDz +

1

2
xTx

=
1

2
zT (WD)T (WD)z − 1

Tz +
1

2
xTx

Ignoring the 1
2x

Tx, which does not change the location of

the minimum, we see that it is an instance of the SVM

objective in equation 3, with v corresponding to z and si
corresponding to WiDii. We have a single class maximum

margin classifier passing through origin where the datapoints

given by {WiDii}
n
i lie in the positive orthant. Since, the

primal version of TNNLS corresponds to the dual of a single

class SVM, the dual of TNNLS corresponds to the primal

of the single class SVM. Geometrically, this corresponds to

finding a maximum margin hyperplane which gives us the set

of supports. Or in other words, it gives us the zero elements

of the vector z or equivalently h. In practice, we might find a

superset of supports because we use a SVM solver to find an

approximate maximum margin hyperplane. These issues are

discussed in further detail in the next section.

A. Implementation issues

Algorithms for solving the SVM problem can be split into

primal or dual depending on the version of the problem they

solve. In this paper, we use a primal SVM solver to find

an approximate maximum-margin hyperplane. This gives us

a subset of nonsupport vectors. We solve for the remaining

entries by invoking an exact NNLS solver. Note that, if we

had a dual SVM solver, we could directly use it to solve the

TNNLS problem. However, since we are using solvers whose

performance scales as O(log(1/ǫ)), it might be preferable to

get an approximate solution for say ǫ = 0.001 and get the

exact solution by using some other exact solver. This depends

on how much we care about the accuracy of the solution and

is application dependent.

Recently, a lot of fast approximate solvers have been pro-

posed to solve the linear SVM problem. OCAS by Franc and

Sonnenburg [2008] is based on a cutting plane algorithm and is

one of the state-of-the art solvers. It very quickly approximates

a maximum-margin hyperplane and its running time is linear

in the size of the input samples (see Franc and Sonnenburg

[2008] or Hsieh et al. [2008] for details). For getting an

approximate maximum-margin hyperplane, we use the OCAS

solver of Franc and Sonnenburg [2008]. However, since we

are using an approximate SVM solver, we find a subset of the

zeros and have to solve for the smaller problem by using an

exact NNLS solver.

B. Approximate solver

If we use a primal hard-margin SVM solver and find an

approximate hyperplane, say w then w satisfies the condition:

1− P (w∗)/P (w) ≤ ǫ where w∗ denotes the optimal hyper-

plane and ǫ is tolerance to which we solve the problem. The

way we set a coefficient to zero is if it’s corresponding input

si satisfies the condition 〈w∗, si〉 > 1. Since we don’t have

the vector w∗ and have access to only w, ǫ, we instead use the

following test function: 〈w, si〉 > 1+δ where δ is a function of
ǫ and the data. By using the primal SVM solver, we are in fact

solving the dual version of the TNNLS problem. Informally,

this corresponds to finding the zeros of the solution vector.

Once, we have all the zeros of the solution vector, the rest

can be found by any least squares solver. However, if we end

up with a subset of the zeros, as we do in this paper, we need

to solve for the rest of the solution vector by using an NNLS

solver. In practice, we find that ǫ set in the range [10−4, 10−6]
is a good compromise between speed and accuracy as seen in

the experiment section IV. We don’t actually give a formula for

computing δ but found 10ǫ to be a good heuristic in practice.

In this paper, we use a soft-margin SVM solver. This results

in the issue of selecting the soft-margin parameter C. If we

had used a hard margin SVM solver, this would not an issue

as C = ∞. However, in the case of soft-margin SVM we need

to set it. Ideally, we want C to be as large as possible. We

found that C in the range [10, 100] is a good choice for a wide

range of problem sizes as shown in experiment section IV.

We illustrate the issue of setting the parameters of C, ǫ and δ
in Figure 1. If the data is not close to the maximum separating

hyperplane then we need not solve the SVM to high accuracy

and can get by with a rough solution. However, if the data is

highly clustered as in the case of Figure 1 then, we need to

set ǫ high and this requires higher computation time for the

SVM solver. It might be that the reduction can take more time

than if we solved it directly. At the moment, we don’t have a

nice way to resolve this question.

If we don’t treat the SVM solver as a black box as we do

now, we can do something smarter by checking ”progress” at

each iteration and can come up with heuristics as to when to

switch to exact solver.

C. Bounds

The soft margin parameter C can be set in a precise manner

if we solve the primal SVM problem exactly. Notice that

the soft-margin SVM formulation (2) has a dual formulation

(3) where the parameter C only appears as an upper-bound

constraint. Let L = max(W
Tx

diag(WTW)
) where the function diag

outputs the diagonal of a given input matrix. Setting C to be

any value greater than L would make the single-class soft-

margin SVM problem with nonnegative inputs equivalent to

its hard-margin formulation. However, since we solve the soft-

margin to only ǫ precision, it becomes tricky as to what the

optimal value for parameter C should be.

We have the following bound on the primal solver objective:

(1− ǫ)P (w) ≤ P (w∗) ≤ P (w)

We can find a nonnegative vector f from the above inequality

such that if 〈w − f , si〉 > 1 implies that 〈w∗, si〉 > 1 for all

inputs si. In practice, we found this approach for estimating

the supports conservative.

IV. EXPERIMENTS

In this section, we are going to present the results of

applying various NNLS algorithms to different datasets. For

the PQN-NNLS solver, we use the code supplied by the

authors of Kim et al. [2006]. The default settings for the

solver were used. The randomized NNLS solver code is based

on Avron et al. [2010] and Kim et al. [2006].

We ran all the experiments on a machine with 2.2Ghz
cpu power and 32GB of physical memory with 8 cores. The

number of threads was set to 1 to ensure that we are using a

single core.

Besides random data sets, we have also applied our TNNLS

solver to data sets that arise from Gamma Knife radio-

surgery [Chin and Regine, 2008] and particle radiation ther-

apy [De Laney and Kooy, 2007].

Gamma knife radiosurgergy has been a well-known treat-

ment modality for many brain tumors and functional disorders.

It uese γ-rays emitted from radioactive 60Co sources to

eradicate tumors and eliminate them. These sources are placed

in a hemispherical, circular or linear array and their γ-ray
beams are focused on a single point, creating a spherical

high dose volume. Generally speaking, the goal of Gamma

Knife is to use these spherical high dose volume to create

a radiation dose distribution where the high dose regions are

conformed to the targeted tumors. The problem is a typical

TNNLS problem, where each column of the matrix W is a

spherical high dose volume, and vector x is the ideal dose

distribution, and the vector h is the weighting (i.e., “beam-on”

time) of each high dose volume. Natually, everything is non-

negative in the problem. Our experimental results on Gamma

Knife radiosurgery are in Section IV-B.

Another type of medical problem that we have experimented

is the particle radiation therapy, where charged particles such

x

y

x

y

Fig. 1. We illustrate two cases where SVM gives us no speed up(left) and the other case where it does(right). The approximate hyperplane which is output
by the SVM solver is shown in blue and the threshold hyperplane whether we accept a point as a non-support is given by the line in green. Parameters C, ǫ
have to be fed in to the SVM solver. A priori, we have to trade-off high values of C and low values of ǫ with computation time. The best values of these
parameters with respect to computation time and correctness of solution depend on the distribution of the data. This is illustrated in the figure. We plot two
dimensional points on a plane in each figure. If the data is too clustered along the maximum-margin hyperplane(left) and the values of C, ǫ and δ are not set
properly, we might end up declaring that all points are potentially supports after running the SVM solver. A better distribution of data would result in the
case(right) where we prune the number of potential supports thereby reducing the size of the original problem.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

1

Fig. 2. C-shaped tumor in the Phantom tumor dataset. We plot 12 of the 35 slices. (Left) After we apply TNNLS solvers, the dosage we end up with for
each of the corresponding target slices is shown(Right)

as protons and carbon ions are used to irradiate tumors. This

problem is similar to Gamma Knife radiosurgery, because the

goal is to use particles beams to cover a targeted tumor to

achieve an ideal dose distribution. Figure 3 shows the profiles

of proton and carbon ions in comparison to X-rays. As can be

seen, the dose profiles of protons and carbon ions display a

distinct localized peak, called a Bragg Peak. The Bragg Peak

makes TNNLS modeling particularly suitable for planning

particle therapy, where the goal is to find the weighting for

each particle beam to created a distribution as close to the

target distribution as possible. Our experimental results on

carbon therapy are shown in Section IV-C.

A. Random problems

We evaluate the performance of the algorithm on randomly

generated problems by varying size, aspect ratio and sparsity

of the input data.

1) Size: We have applied the algorithm to a suite of 200
randomly generated problems of varying size. This is done by

sampling the entries of W ,x uniformly from [0, 1]. We set the

size of the matrix W to be 300i× 200i, where i ranges from
1 to 40. And, for each size, we create 5 randomly generated

problems.

First, we applied the NNLS algorithms FNNLS [Bro and

De Jong, 1997], RAND-PQN-NNLS [Boutsidis and Drineas,

2009] and PQN-NNLS [Kim et al., 2006] to solve this set of

Fig. 3. Dose profiles of proton and antiproton beams

problems. The running times for these algorithms are shown

in Figure 4 with solid markers.

Next, we applied our reduction to obtain the SVM problem,

and used the OCAS algorithm to find most of the zeros of the

solution vector, and finally solved for the nonzeros by giving it

to each of the 3 NNLS solvers mentioned above. The objective

value obtained for the exact solver and the corresponding

OCAS initialized solver match up to 6 significant digits. The

parameters in OCAS initialized solvers are set as (C, ǫ) =
(10, 10−4) for all problems. We plot the running time for the 3
OCAS initialized algorithms in Figure 4 using hollow markers.

For each size, we plot the mean of running times. Note that

these running times are for the entire procedure of reduction,

running the SVM solver, and exact solution of the smaller

NNLS problem. Except for the smallest cases, the OCAS

initialized solver beats the corresponding exact solver. For

larger matrices, the figure shows at least an order of magnitude

improvement in the running times.

2) Aspect ratio: We did a similar analysis on a suite of

30 randomly generated problems of varying aspect ratio. The

number of rows is set to 12000 and the number of columns is

1200× i where i goes from 1 to 6. For each i, we generate 5
random instances. The parameters in OCAS initialized solvers

are set as (C, ǫ) = (10, 10−4). The running times for all the

six solvers are shown in Figure 4.

3) Sparsity: We also compared the running times for two

of the solvers by varying the sparsity of the input matrix W .

We choose a fixed sized problem of size 1200×800 and varied

the sparsity from 0.1 to 1.0 in increments of 0.1. Note that 1.0
corresponds to all the elements being nonzero. The parameters

in OCAS initialized solvers are set as (C, ǫ) = (100, 10−6).
The plots of running times for the two solvers FNNLS and

PQN-NNLS and their OCAS initalized solvers are shown in

0.2 0.4 0.6 0.8 1.0
Density

10-1

100

101

tim
e

(s
ec

on
ds

)

PQN-NNLS
fNNLS
OCAS-PQN-NNLS
OCAS-fNNLS

Fig. 5. We plot running times for FNNLS and PQN-NNLS and their
corresponding OCAS initialized solvers. The problem size is fixed at 1200×
800 and we vary the density from 0.1 to 1.0. These are the mean times for
10 runs at each density level.

Figure IV-A.3.

B. Phantom tumor dataset

We have also applied our TNNLS solver to a data set from

a phantom commonly used for benchmarking radiosurgery

treatment planning systems [Luan et al., 2009]. The phantom

contains a C-shaped tumor surrounding a spherical critical

structure and simulates a spine tumor case. In this data set,

the size of the input matrix W is 42875×20268 and the input

vector x is of size 42875. Clinically, each column of the matrix

W represents the radiation energy distribution deposited by a

“shot” of radiation in Gamma Knife radiosurgery. The matrix

x represents the ideal radiation energy deposition as prescribed

Fig. 4. We plot the running time for all 6 approaches. Lines with filled markers correspond to NNLS solvers and hollow markers correspond to NNLS solvers
initialized by the OCAS solver and our reduction technique. The x-axis is indexed by i, which controls the size of the input matrix, which is 300i× 200i.

Dataset FNNLS PQN-NNLS OCAS-

FNNLS

OCAS-

PQN-NNLS

Scaling fac-

tor

Phantom

tumor

18.69 78.66 1.0 5.48 186s

Skull-base

tumor

2.21 43.16 1.0 9.01 906s

Prostate

tumor

1.46 2.04 1.0 1.35 134s

Fig. 6. Running times on the different datasets using the solvers FNNLS, PQN-NNLS and RAND-PQN-NNLS and their corresponding OCAS initialized
counterparts can be obtained by multiplying the corresponding entry with the scaling factor. Comparison between running times across different NNLS solvers
should be taken with a grain of salt for the stopping criterion for each solver is potentially different. However, stopping criterion between a solver and its
OCAS initialized solver are the same and thus can be compared.

by the physician. The sought variable h denotes the beam-on

time each shot (i.e., a column of W) to create a radiation

dose distribution that is as close to the ideal as possible.

All solvers have the same objective value up to 6 significant

digits. The parameters in OCAS initialized solvers are set as

(C, ǫ) = (10, 10−4). The running times are shown in Figure 6.

C. Real tumor datasets

Besides randomly generated data, we also applied our

TNNLS solver to two real radiation therapy data sets, both

obtained from the German Cancer Research Center (DKFZ),

of Heidelberg, Germany. The first of these is a skull base tumor

case that was treated with carbon ion therapy. In this data set,

the size of input matrix W is 227920 × 6505 and the input

vector x is 227920. Just like the dataset in Section IV-B, the

columns of W represent the radiation energy distribution of

an ion beam, while the vector x represents the prescription.

The goal of the optimization is to calculate the beam-on time

for each individual beam. Note that the default setting of

the soft margin to 10 didn’t converge to the exact solution,

so we used 100 for this dataset. The objective values match

upto 6 significant digits as before. The parameters in OCAS

initialized solvers are set as (C, ǫ) = (100, 10−4). The running
times are shown in Table 6.

The second real data set is a prostate carcinoma case that

was treated using two opposing beams. In this data set, the

input matrix is 8284 × 7388. The parameters in the OCAS

initialized solvers are set as (C, ǫ) = (100, 10−5).

D. Discussion

The speed up in the case of Real Tumor dataset is only

around 2 times compared to the magnitude improvement we

get in the case of Random and Phantom tumor datasets for the

FNNLS solver. This is to be expected because the input matrix

is “tall” and our algorithm does better when we are dealing

with “fat” matrices. We have used the exact solver from Kim

et al. [2006] in combination with the randomized algorithm of

Boutsidis and Drineas [2009]. Other exact solvers can also be

used.

Note, the speedup is not uniform across the various prob-

lems. As, we noted in section “approximate solvers”, this

depends on the spread of the data. If the datapoints are not

clustered along the maximum margin hyperplane, we can solve

it pretty quickly using the approximate SVM solver. However,

for cases, where this is not true, the running time for our solver

is increased.

In the case where the matrix W is sparse, we found that a

more aggressive setting for the parameters C, ǫ was required.

V. CONCLUSIONS AND FUTURE WORK

We have shown a reduction from TNNLS to a single-

class SVM. This gave us insight into the connection between

nonnegativity and sparsity and further enabled us to propose

an efficient algorithm to solve the TNNLS problem. The new

algorithm is simple to implement and involves combining an

SVM solver (such as OCAS) with an exact NNLS solver. We

have shown its application to random problems, as well as to

two real examples of dose calculation in radiation therapy.

Also, we show that nonnegativity corresponds to sparsity

depending on how many elements lie on the maximum-

margin hyperplane. This explains the connection between

nonnegativity and sparsity posed in the work on compressive

sensing by O’Grady and Rickard [2008]. Also, the running

time depended on the spread of data and we would like

explore when it make sense to use the reduction and how

to set the parameters in the SVM to best trade-off between

the approximate SVM solver and an exact NNLS solver. This

approach can potentially be also used for solving Nonnegative

Matrix Factorization (NMF), which is a subject for future

work. Our approach seems to be more suitable for “fat”

matrices, where the number of rows and columns are similar.

Also, if we have an additional L1 regularizer in the objective

function, our framework can be extended to handle it.

The NNLS solver used in Luan et al. [2009] used advanced

techniques such as multi-threading and vector commands, and

has only floating point precision, while our TNNLS solver has

double precision. A similar speed up is conceivable if solvers

used in this paper were implemented in a similar manner.

ACKNOWLEDGEMENT

The first author would like to acknowledge the support from

NIBIB grants 1 R01 EB 000840 and 1 R01 EB 005846.

The second author was supported by NIMH grant 1 R01

MH076282-01. The latter two grants were funded as part

of the NSF/NIH Collaborative Research in Computational

Neuroscience Program. Also, we would like to acknowledge

the software support from the Austin group and the RPI group.

The third author would like to acknowledge the support from

grants NCI R01CA117997 and NSF CBET-0755054.

REFERENCES

H. Avron, P. Maymounkov, and S. Toledo. Blendenpik:

Supercharging lapack’s least-squares solver. SIAM Journal

on Scientific Computing, 32(3):1217–1236, 2010. ISSN

1064-8275.

C. Boutsidis and P. Drineas. Random projections for the

nonnegative least-squares problem. Linear Algebra and its

Applications, 431(5-7):760–771, 2009. ISSN 0024-3795.

R. Bro and S. De Jong. A fast non-negativity-constrained

least squares algorithm. Journal of Chemometrics, 11(5):

393–401, 1997. ISSN 1099-128X.

A.M. Bruckstein, M. Elad, and M. Zibulevsky. A non-

negative and sparse enough solution of an underdetermined

linear system of equations is unique. Submitted to IEEE

Transactions on Information Theory, 2008.

C.I. Chang and D.C. Heinz. Constrained subpixel target

detection for remotely sensed imagery. Geoscience and

Remote Sensing, IEEE Transactions on, 38(3):1144–1159,

2000. ISSN 0196-2892.

L. Chin and W. Regine.

Principles and practice of stereotactic radiosurgery.

Springer Verlag, 2008. ISBN 0387710698.

T.F. De Laney and H.M. Kooy.

Proton and charged particle radiotherapy. Lippincott

Williams & Wilkins, 2007. ISBN 0781765528.

D.L. Donoho and J. Tanner. Thresholds for the recovery

of sparse solutions via l1 minimization. In Information

Sciences and Systems, 2006 40th Annual Conference on,

pages 202–206. IEEE, 2006. ISBN 1424403499.

V. Franc and S. Sonnenburg. Optimized cutting plane algo-

rithm for support vector machines. In Proceedings of the

25th international conference on Machine learning, pages

320–327. ACM, 2008.

V. Franc, V. Hlavac, and M. Navara. Sequential coordinate-

wise algorithm for the non-negative least squares prob-

lem. In Computer Analysis of Images and Patterns, page

407, 2005. URL http://dx.doi.org/10.1007/

11556121_50.

Thilo-Thomas Frieß, Nello Cristianini, and Colin Campbell.

The Kernel-Adatron algorithm: a fast and simple learning

procedure for support vector machines. In Proc. 15th

International Conf. on Machine Learning, pages 188–196.

Morgan Kaufmann, San Francisco, CA, 1998.

S. Hochreiter and M.C. Mozer. Monaural separation and

classification of mixed signals: A support-vector regression

perspective. In 3rd International Conference on Independent

Component Analysis and Blind Signal Separation, San

Diego, CA. Citeseer, 2001.

Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya

Keerthi, and S. Sundararajan. A dual coordinate descent

method for large-scale linear svm. In Proceedings of the

25th international conference on Machine learning, ICML

’08, pages 408–415, New York, NY, USA, 2008. ACM.

ISBN 978-1-60558-205-4. doi: http://doi.acm.org/10.1145/

1390156.1390208. URL http://doi.acm.org/10.

1145/1390156.1390208.

V. Kecman. Learning and soft computing: Support vector

machines, neural networks, and fuzzy logic models. The

MIT press, 2001. ISBN 0262112558.

D. Kim, S. Sra, and I.S. Dhillon. A new projected

quasi-newton approach for the nonnegative least squares

problem. Citeseer, 2006.

CL Lawson and RJ Hanson. Solving least squares problems,

340 pp, 1974.

F. Li, Y. Yang, and E. Xing. From lasso regression to feature

vector machine. Advances in Neural Information Processing

Systems, 18:779, 2006. ISSN 1049-5258.

S. Luan, N. Swanson, Z. Chen, and L. Ma. Dynamic gamma

knife radiosurgery. Physics in Medicine and Biology, 54:

1579, 2009.

M. Merritt and Y. Zhang. Interior-point gradient method

for large-scale totally nonnegative least squares problems.

Journal of optimization theory and applications, 126(1):

191–202, 2005. ISSN 0022-3239.

P.D. O’Grady and S.T. Rickard. Compressive sampling of

non-negative signals. In Machine Learning for Signal

Processing, 2008. MLSP 2008. IEEE Workshop on, pages

133–138. IEEE, 2008.

J. Platt. Sequential minimal optimization: A fast algorithm for

training support vector machines, 1998. URL citeseer.

ist.psu.edu/platt98sequential.html.

Bernhard Schölkopf and Alexander J. Smola. Learning

with Kernels: Support Vector Machines, Regularization,

Optimization, and Beyond (Adaptive Computation and

Machine Learning). The MIT Press, 2001. ISBN

0262194759. URL http://www.amazon.ca/

exec/obidos/redirect?tag=citeulike09-20\

&path=ASIN/0262194759.

M.H. Van Benthem and M.R. Keenan. Fast algorithm for

the solution of large-scale non-negativity-constrained least

squares problems. Journal of chemometrics, 18(10):441–

450, 2004. ISSN 1099-128X.

L. Wang. Support Vector Machines: theory and applications.

Springer Verlag, 2005. ISBN 3540243887.

E. Zeng and M. Ogihara. NONNEGATIVE LEAST

SQUARE–A NEW LOOK INTO SAGE DATA. In

Proceedings of CSB, volume 9, 2009.

